• J. Cereb. Blood Flow Metab. · Sep 2007

    Aging effects on cerebral blood and cerebrospinal fluid flows.

    • Souraya Stoquart-ElSankari, Olivier Balédent, Catherine Gondry-Jouet, Malek Makki, Olivier Godefroy, and Marc-Etienne Meyer.
    • Department of Neurology, Amiens University hospital, Amiens Cedex, France. stoquart-elsankari.soraya@chu-amiens.fr
    • J. Cereb. Blood Flow Metab. 2007 Sep 1; 27 (9): 1563-72.

    AbstractPhase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive reliable technique, which enables quantification of cerebrospinal fluid (CSF) and total cerebral blood flows (tCBF). Although it is used to study hydrodynamic cerebral disorders in the elderly group (hydrocephalus), there is no published evaluation of aging effects on both tCBF and CSF flows, and on their mechanical coupling. Nineteen young (mean age 27+/-4 years) and 12 elderly (71+/-9 years) healthy volunteers underwent cerebral MRI using 1.5 T scanner. Phase-contrast magnetic resonance imaging pulse sequence was performed at the aqueductal and cervical levels. Cerebrospinal fluid and blood flow curves were then calculated over the cardiac cycle, to extract the characteristic parameters: mean and peak flows, their latencies, and stroke volumes for CSF (cervical and aqueductal) and vascular flows. Total cerebral blood flow was (P<0.01) decreased significantly in the elderly group when compared with the young subjects with a linear correlation with age observed only in the elderly group (R(2)=0.7; P=0.05). Arteriovenous delay was preserved with aging. The CSF stroke volumes were significantly reduced in the elderly, at both aqueductal (P<0.01) and cervical (P<0.05) levels, whereas aqueduct/cervical proportion (P=0.9) was preserved. This is the first work to study aging effects on both CSF and vascular cerebral flows. Data showed (1) tCBF decrease, (2) proportional aqueductal and cervical CSF pulsations reduction as a result of arterial loss of pulsatility, and (3) preserved intracerebral compliance with aging. These results should be used as reference values, to help understand the pathophysiology of degenerative dementia and cerebral hydrodynamic disorders as hydrocephalus.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.