• Scientific reports · Apr 2020

    Real-time Burn Classification using Ultrasound Imaging.

    • Sangrock Lee, Rahul Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA., Hanglin Ye, Deepak Chittajallu, Uwe Kruger, Tatiana Boyko, James K Lukan, Andinet Enquobahrie, Jack Norfleet, and Suvranu De.
    • Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA.
    • Sci Rep. 2020 Apr 2; 10 (1): 5829.

    AbstractThis article presents a real-time approach for classification of burn depth based on B-mode ultrasound imaging. A grey-level co-occurrence matrix (GLCM) computed from the ultrasound images of the tissue is employed to construct the textural feature set and the classification is performed using nonlinear support vector machine and kernel Fisher discriminant analysis. A leave-one-out cross-validation is used for the independent assessment of the classifiers. The model is tested for pair-wise binary classification of four burn conditions in ex vivo porcine skin tissue: (i) 200 °F for 10 s, (ii) 200 °F for 30 s, (iii) 450 °F for 10 s, and (iv) 450 °F for 30 s. The average classification accuracy for pairwise separation is 99% with just over 30 samples in each burn group and the average multiclass classification accuracy is 93%. The results highlight that the ultrasound imaging-based burn classification approach in conjunction with the GLCM texture features provide an accurate assessment of altered tissue characteristics with relatively moderate sample sizes, which is often the case with experimental and clinical datasets. The proposed method is shown to have the potential to assist with the real-time clinical assessment of burn degrees, particularly for discriminating between superficial and deep second degree burns, which is challenging in clinical practice.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.