• Radiology · May 2020

    Computer-aided Detection of Brain Metastases in T1-weighted MRI for Stereotactic Radiosurgery Using Deep Learning Single-Shot Detectors.

    • Zijian Zhou, Jeremiah W Sanders, Jason M Johnson, Maria K Gule-Monroe, Melissa M Chen, Tina M Briere, Yan Wang, Jong Bum Son, Mark D Pagel, Jing Li, and Jingfei Ma.
    • From the Department of Imaging Physics (Z.Z., J.W.S., J.B.S., J.M.), Medical Physics Graduate Program, UTHealth Graduate School of Biomedical Sciences (J.W.S.), Department of Diagnostic Radiology (J.M.J., M.K.G., M.M.C.), Department of Radiation Physics (T.M.B.), Department of Radiation Oncology (Y.W., J.L.), and Department of Cancer Systems Imaging (M.D.P.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030.
    • Radiology. 2020 May 1; 295 (2): 407-415.

    AbstractBackground Brain metastases are manually identified during stereotactic radiosurgery (SRS) treatment planning, which is time consuming and potentially challenging. Purpose To develop and investigate deep learning (DL) methods for detecting brain metastasis with MRI to aid in treatment planning for SRS. Materials and Methods In this retrospective study, contrast material-enhanced three-dimensional T1-weighted gradient-echo MRI scans from patients who underwent gamma knife SRS from January 2011 to August 2018 were analyzed. Brain metastases were manually identified and contoured by neuroradiologists and treating radiation oncologists. DL single-shot detector (SSD) algorithms were constructed and trained to map axial MRI slices to a set of bounding box predictions encompassing metastases and associated detection confidences. Performances of different DL SSDs were compared for per-lesion metastasis-based detection sensitivity and positive predictive value (PPV) at a 50% confidence threshold. For the highest-performing model, detection performance was analyzed by using free-response receiver operating characteristic analysis. Results Two hundred sixty-six patients (mean age, 60 years ± 14 [standard deviation]; 148 women) were randomly split into 80% training and 20% testing groups (212 and 54 patients, respectively). For the testing group, sensitivity of the highest-performing (baseline) SSD was 81% (95% confidence interval [CI]: 80%, 82%; 190 of 234) and PPV was 36% (95% CI: 35%, 37%; 190 of 530). For metastases measuring at least 6 mm, sensitivity was 98% (95% CI: 97%, 99%; 130 of 132) and PPV was 36% (95% CI: 35%, 37%; 130 of 366). Other models (SSD with a ResNet50 backbone, SSD with focal loss, and RetinaNet) yielded lower sensitivities of 73% (95% CI: 72%, 74%; 171 of 234), 77% (95% CI: 76%, 78%; 180 of 234), and 79% (95% CI: 77%, 81%; 184 of 234), respectively, and lower PPVs of 29% (95% CI: 28%, 30%; 171 of 581), 26% (95% CI: 26%, 26%; 180 of 681), and 13% (95% CI: 12%, 14%; 184 of 1412). Conclusion Deep-learning single-shot detector models detected nearly all brain metastases that were 6 mm or larger with limited false-positive findings using postcontrast T1-weighted MRI. © RSNA, 2020 See also the editorial by Kikinis and Wells in this issue.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…