-
- Georgina Palomés-Borrajo, Jordi Badia, Xavier Navarro, and Clara Penas.
- Institute of Neurosciences, Dept. Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Spain.
- J Pain. 2021 Dec 1; 22 (12): 1617-1630.
AbstractNeuropathic pain is a common disability produced by enhanced neuronal excitability after nervous system injury. The pathophysiological changes that underlie the generation and maintenance of neuropathic pain require modifications of transcriptional programs. In particular, there is an induction of pro-inflammatory neuromodulators levels, and changes in the expression of ion channels and other factors intervening in the determination of the membrane potential in neuronal cells. We have previously found that inhibition of the BET proteins epigenetic readers reduced neuroinflammation after spinal cord injury. Within the present study we aimed to determine if BET protein inhibition may also affect neuroinflammation after a peripheral nerve injury, and if this would beneficially alter neuronal excitability and neuropathic pain. For this purpose, C57BL/6 female mice underwent spared nerve injury (SNI), and were treated with the BET inhibitor JQ1, or vehicle. Electrophysiological and algesimetry tests were performed on these mice. We also determined the effects of JQ1 treatment after injury on neuroinflammation, and the expression of neuronal components important for the maintenance of axon membrane potential. We found that treatment with JQ1 affected neuronal excitability and mechanical hyperalgesia after SNI in mice. BET protein inhibition regulated cytokine expression and reduced microglial reactivity after injury. In addition, JQ1 treatment altered the expression of SCN3A, SCN9A, KCNA1, KCNQ2, KCNQ3, HCN1 and HCN2 ion channels, as well as the expression of the Na+/K+ ATPase pump subunits. In conclusion, both, alteration of inflammation, and neuronal transcription, could be the responsible epigenetic mechanisms for the reduction of excitability and hyperalgesia observed after BET inhibition. Inhibition of BET proteins is a promising therapy for reducing neuropathic pain after neural injury. PERSPECTIVE: Neuropathic pain is a common disability produced by enhanced neuronal excitability after nervous system injury. The underlying pathophysiological changes require modifications of transcriptional programs. This study notes that inhibition of BET proteins is a promising therapy for reducing neuropathic pain after neural injury.Copyright © 2021 United States Association for the Study of Pain, Inc. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.