• Eur J Radiol · Jul 2020

    Multicenter Study

    Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule.

    • Bao Feng, Xiangmeng Chen, Yehang Chen, Kunfeng Liu, Kunwei Li, Xueguo Liu, Nan Yao, Zhi Li, Ronggang Li, Chaotong Zhang, Jianbo Ji, and Wansheng Long.
    • The Department of Radiology, The Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong Province, China; School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin, Guangxi Province, China.
    • Eur J Radiol. 2020 Jul 1; 128: 109022.

    PurposeTo investigate the preoperative differential diagnostic performance of a radiomics nomogram in tuberculous granuloma (TBG) and lung adenocarcinoma (LAC) appearing as solitary pulmonary solid nodules (SPSNs).MethodWe retrospectively recruited 426 patients with SPSNs from two centers and assigned them to training (n = 123), internal validation (n = 121), and external validation cohorts (n = 182). A model of deep learning (DL) was built for tumor segmentation from routine computed tomography (CT) images and extraction of 3D radiomics features. We used the least absolute shrinkage and selection operator (LASSO) logistic regression to build a radiomics signature. A clinical model was developed with clinical factors, including age, gender, and CT-based subjective findings (eg, lesion size, lesion location, lesion margin, lobulated sharp, and spiculation sign). We constructed individualized radiomics nomograms incorporating the radiomics signature and clinical factors to validate the diagnostic ability.ResultsThree factors - radiomics signature, age, and spiculation sign - were found to be independent predictors and were used to build the radiomics nomogram, which showed better diagnostic accuracy than any single model (all net reclassification improvement p < 0.05). The area under curve yielded was 0.9660 (95% confidence interval [CI], 0.9390-0.9931), 0.9342 (95% CI, 0.8944-0.9739), and 0.9064 (95% CI, 0.8639-0.9490) for the training, internal validation, and external validation cohorts, respectively. Decision curve analysis (DCA) and stratification analysis showed the nomogram has potential for generalizability.ConclusionThe radiomics nomogram we developed can preoperatively distinguish between LAC and TBG in patient with a SPSN.Copyright © 2020 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.