• J Magn Reson Imaging · Jun 2003

    Three-dimensional T1rho-weighted MRI at 1.5 Tesla.

    • Arijitt Borthakur, Andrew Wheaton, Sridhar R Charagundla, Erik M Shapiro, Ravinder R Regatte, Sarma V S Akella, J Bruce Kneeland, and Ravinder Reddy.
    • Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA. ari@mail.mmrrcc.upenn.edu
    • J Magn Reson Imaging. 2003 Jun 1; 17 (6): 730-6.

    PurposeTo design and implement a magnetic resonance imaging (MRI) pulse sequence capable of performing three-dimensional T(1rho)-weighted MRI on a 1.5-T clinical scanner, and determine the optimal sequence parameters, both theoretically and experimentally, so that the energy deposition by the radiofrequency pulses in the sequence, measured as the specific absorption rate (SAR), does not exceed safety guidelines for imaging human subjects.Materials And MethodsA three-pulse cluster was pre-encoded to a three-dimensional gradient-echo imaging sequence to create a three-dimensional, T(1rho)-weighted MRI pulse sequence. Imaging experiments were performed on a GE clinical scanner with a custom-built knee-coil. We validated the performance of this sequence by imaging articular cartilage of a bovine patella and comparing T(1rho) values measured by this sequence to those obtained with a previously tested two-dimensional imaging sequence. Using a previously developed model for SAR calculation, the imaging parameters were adjusted such that the energy deposition by the radiofrequency pulses in the sequence did not exceed safety guidelines for imaging human subjects. The actual temperature increase due to the sequence was measured in a phantom by a MRI-based temperature mapping technique. Following these experiments, the performance of this sequence was demonstrated in vivo by obtaining T(1rho)-weighted images of the knee joint of a healthy individual.ResultsCalculated T(1rho) of articular cartilage in the specimen was similar for both and three-dimensional and two-dimensional methods (84 +/- 2 msec and 80 +/- 3 msec, respectively). The temperature increase in the phantom resulting from the sequence was 0.015 degrees C, which is well below the established safety guidelines. Images of the human knee joint in vivo demonstrate a clear delineation of cartilage from surrounding tissues.ConclusionWe developed and implemented a three-dimensional T(1rho)-weighted pulse sequence on a 1.5-T clinical scanner.Copyright 2003 Wiley-Liss, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.