-
- Xuanxuan Li, Yiping Lu, Ji Xiong, Dongdong Wang, Dejun She, Xinping Kuai, Daoying Geng, and Bo Yin.
- Department of Radiology, Huashan Hospital Affiliated to Fudan University, 12 Wulumuqi Rd. Middle, Shanghai 200040, China.
- J Neuroradiology. 2019 Sep 1; 46 (5): 281-287.
PurposeTo assess whether a machine-learning model based on texture analysis (TA) could yield a more accurate diagnosis in differentiating malignant haemangiopericytoma (HPC) from angiomatous meningioma (AM).Materials And MethodsSixty-seven pathologically confirmed cases, including 24 malignant HPCs and 43 AMs between May 2013 and September 2017 were retrospectively reviewed. In each case, 498 radiomic features, including 12 clinical features and 486 texture features from MRI sequences (T2-FLAIR, DWI and enhanced T1WI), were extracted. Three neuroradiologists independently made diagnoses by vision. Four Support Vector Machine (SVM) classifiers were built, one based on clinical features and three based on texture features from three MRI sequences after feature selection. The diagnostic abilities of these classifiers and three neuroradiologists were evaluated by receiver operating characteristic (ROC) analysis.ResultsMalignant HPCs were found to have larger sizes, slighter degrees of peritumoural oedema compared with AMs (P<0.05), and more serpentine-like vessels. The AUC of the enhanced T1WI-based classifier was 0.90, significantly higher than that of T2-FLAIR-based or DWI-based classifiers (0.77 and 0.73). The AUC of the SVM classifier based on clinical features was 0.66, slightly but not significantly lower than the performances of 3 neuroradiologists (AUC=0.69, 0.70 and 0.73).ConclusionMachine-learning models based on clinical features alone could not provide a better diagnostic performance than that of radiologists. The SVM classifier built by texture features extracted from enhanced T1WI is a promising tool to differentiate malignant HPC from AM before surgery.Copyright © 2019 Elsevier Masson SAS. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.