• Complement Ther Clin Pract · Aug 2017

    Review Meta Analysis

    Effects of motor imagery on walking function and balance in patients after stroke: A quantitative synthesis of randomized controlled trials.

    • Rong-Qing Li, Zhuang-Miao Li, Jing-Yu Tan, Gu-Lan Chen, and Wen-Ying Lin.
    • School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
    • Complement Ther Clin Pract. 2017 Aug 1; 28: 75-84.

    ObjectiveThis study aimed to evaluate the effects of motor imagery (MI) on walking function and balance in patients after stroke.MethodsRelated randomized controlled trials (RCTs) were searched in 12 electronic databases (Cochrane Central Register of Controlled Trials, PubMed, Science Direct, Web of Science, Allied and Complementary Medicine, Embase, Cumulative Index to Nursing and Allied Health Literature, PsycINFO, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, WanFang, and VIP) from inception to November 30, 2016, and Review Manager 5.3 was used for meta-analysis. References listed in included papers and other related systematic reviews on MI were also screened for further consideration.ResultsA total of 17 studies were included. When compared with "routine methods of treatment or training", meta-analyses showed that MI was more effective in improving walking abilities (standardized mean difference [SMD] = 0.69, random effect model, 95% confidence interval [CI] = 0.38 to 1.00, P < 0.0001) and motor function in stroke patients (SMD = 0.84, random effect model, 95% CI = 0.45 to 1.22, P < 0.0001), but no statistical difference was noted in balance (SMD = 0.81, random effect model, 95% CI = -0.03 to 1.65, P = 0.06). Statistically significant improvement in walking abilities was noted at short-term (0 to < six weeks) (SMD = 0.83, fixed effect model, 95% CI = 0.24 to 1.42, P = 0.006) and long-term (≥six weeks) assessments (SMD = 0.45, fixed effect model, 95% CI = 0.25 to 0.64, P < 0.00001). Subgroup analyses suggested that MI had a positive effect on balance with short-term duration (0 to < six weeks) (SMD = 4.67, fixed effect model, 95% CI = 2.89 to 6.46, P < 0.00001), but failed to improve balance (SMD = 0.82, random effect model, 95% CI = -0.27 to 1.90, P = 0.14) with long-term (≥six weeks) duration.ConclusionMI appears to be a beneficial intervention for stroke rehabilitation. Nonetheless, existing evidence regarding the effects of MI in patients after stroke remains inconclusive because of significantly statistical heterogeneity and methodological flaws identified in the included studies. More large-scale and rigorously designed RCTs in future research with sufficient follow-up periods are needed to provide more reliable evidence on the effects of MI in post-stroke patients.Copyright © 2017 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.