• Experimental neurology · Aug 2016

    Neonatal seizures induced by pentylenetetrazol or kainic acid disrupt primary cilia growth on developing mouse cortical neurons.

    • Alexander K Parker, Megan M Le, Tyler S Smith, Lan B Hoang-Minh, Eric W Atkinson, George Ugartemendia, Susan Semple-Rowland, Jason E Coleman, and Matthew R Sarkisian.
    • Department of Neuroscience, University of Florida, Gainesville, Florida 32610, United States.
    • Exp. Neurol. 2016 Aug 1; 282: 119-27.

    AbstractNeonatal or early-life seizures (ELS) are often associated with life-long neurophysiological, cognitive and behavioral deficits, but the underlying mechanisms contributing to these deficits remain poorly understood. Newborn, post-migratory cortical neurons sprout ciliary buds (procilia) that mature into primary cilia. Disruption of the growth or signaling capabilities of these cilia has been linked to atypical neurite outgrowth from neurons and abnormalities in neuronal circuitry. Here, we tested the hypothesis that generalized seizures induced by pentylenetetrazol (PTZ) or kainic acid (KA) during early postnatal development impair neuronal and/or glial ciliogenesis. Mice received PTZ (50 or 100mg/kg), KA (2mg/kg), or saline either once at birth (P0), or once daily from P0 to P4. Using immunohistochemistry and electron microscopy, the cilia of neurons and glia were examined at P7, P14, and P42. A total of 83 regions were analyzed, representing 13 unique neocortical and hippocampal regions. Neuronal cilia were identified by co-expression of NeuN and type 3 adenylyl cyclase (ACIII) or somatostatin receptor 3 (SSTR3), while glial cilia were identified by co-expression of GFAP, Arl13b, and gamma-tubulin. We found that PTZ exposure at either P0 or from P0 to P4 induced convulsive behavior, followed by acute and lasting effects on neuronal cilia lengths that varied depending on the cortical region, PTZ dose, injection frequency, and time post-PTZ. Both increases and decreases in neuronal cilia length were observed. No changes in the length of glial cilia were observed under any of the test conditions. Lastly, we found that a single KA seizure at P0 led to similar abnormalities in neuronal cilia lengths. Our results suggest that seizure(s) occurring during early stages of cortical development induce persistent and widespread changes in neuronal cilia length. Given the impact neuronal cilia have on neuronal differentiation, ELS-induced changes in ciliogenesis may contribute to long-term pathology and abnormal cortical function.Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.