-
- Zechen Zhou, Shuo Chen, Niranjan Balu, Baocheng Chu, Xihai Zhao, Jie Sun, Mahmud Mossa-Basha, Thomas Hatsukami, Peter Börnert, and Chun Yuan.
- Philips Research North America, Cambridge, MA 02141, United States. Electronic address: ze.chen.zhou@philips.com.
- Magn Reson Imaging. 2021 May 1; 78: 7-17.
PurposeTo improve the signal-to-noise ratio (SNR) and image sharpness for whole brain isotropic 0.5 mm three-dimensional (3D) T1 weighted (T1w) turbo spin echo (TSE) intracranial vessel wall imaging (IVWI) at 3 T.MethodsThe variable flip angle (VFA) method enables useful optimization across scan efficiency, SNR and relaxation induced point spread function (PSF) for TSE imaging. A convolutional neural network (CNN) was developed to retrospectively enhance the acquired TSE image with PSF blurring. The previously developed VFA method to increase SNR at the expense of blur can be combined with the presented PSF correction to yield long echo train length (ETL) scan while the acquired image remains high SNR and sharp. The overall approach can enable an optimized solution for accelerated whole brain high-resolution 3D T1w TSE IVWI. Its performance was evaluated on healthy volunteers and patients.ResultsThe PSF blurred image acquired by a long ETL scan can be enhanced by CNN to restore similar sharpness as a short ETL scan, which outperforms the traditional linear PSF enhancement approach. For accelerated whole brain IVWI on volunteers, the optimized isotropic 0.5 mm 3D T1w TSE sequence with CNN based PSF enhancement provides sufficient flow suppression and improved image quality. Preliminary results on patients further demonstrated its improved delineation for intracranial vessel wall and plaque morphology.ConclusionThe CNN enhanced VFA TSE imaging enables an overall image quality improvement for high-resolution 3D T1w IVWI, and may provide a better tradeoff across scan efficiency, SNR and PSF for 3D TSE acquisitions.Copyright © 2021 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.