-
Investigative radiology · May 2014
Optimization of magnetization-prepared 3-dimensional fluid attenuated inversion recovery imaging for lesion detection at 7 T.
- Manojkumar Saranathan, Thomas Tourdias, Adam B Kerr, Jeff D Bernstein, Geoffrey A Kerchner, May H Han, and Brian K Rutt.
- From the Departments of *Radiology, †Electrical Engineering, and ‡Neurology and Neurological Sciences, Stanford University, Stanford, CA.
- Invest Radiol. 2014 May 1; 49 (5): 290-8.
PurposeThe aim of this study was to optimize the 3-dimensional (3D) fluid attenuated inversion recovery (FLAIR) pulse sequence for isotropic high-spatial-resolution imaging of white matter (WM) and cortical lesions at 7 T.Materials And MethodsWe added a magnetization-prepared (MP) FLAIR module to a Cube 3D fast spin echo sequence and optimized the refocusing flip angle train using extended phase graph simulations, taking into account image contrast, specific absorption rate (SAR), and signal-to-noise ratio (SNR) as well as T1/T2 values of the different species of interest (WM, grey matter, lesions) at 7 T. We also effected improved preparation homogeneity at 7 T by redesigning the refocusing pulse used in the MP segments. Two sets of refocusing flip angle trains-(a) an SNR-optimal and (b) a contrast-optimal set-were derived and used to scan 7 patients with Alzheimer disease/cognitive impairment and 7 patients with multiple sclerosis. Conventional constant refocusing flip MP-FLAIR images were also acquired for comparison. Lesion SNR, contrast, and lesion count were compared between the 2 optimized and the standard FLAIR sequences.ResultsWhole brain coverage with 0.8 mm isotropic spatial resolution in ∼5-minute scan times was achieved using the optimized 3D FLAIR sequences at clinically acceptable SAR levels. The SNR efficiency of the SNR-optimal sequence was significantly better than that of conventional constant refocusing flip MP-FLAIR sequence, whereas the scan time was reduced more than 2-fold (∼5 vs >10 minutes). The contrast efficiency of the contrast-optimal sequence was comparable with that of the constant refocusing flip sequence. Lesion load ascertained by lesion counting was not significantly different among the sequences.ConclusionMagnetization-prepared FLAIR-Cube with refocusing flip angle trains optimized for SNR and contrast can be used to characterize WM and cortical lesions at 7 T with 0.8 mm isotropic resolution in short scan times and without SAR penalty.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.