-
Investigative radiology · Jan 2013
Diagnostic performance of dark-blood T2-weighted CMR for evaluation of acute myocardial injury.
- Monvadi B Srichai, Ruth P Lim, Narayan Lath, James Babb, Leon Axel, and Daniel Kim.
- Department of Radiology, New York University School of Medicine, NY, USA. srichai@alum.mit.edu
- Invest Radiol. 2013 Jan 1; 48 (1): 24-31.
ObjectivesWe compared the image quality and diagnostic performance of 2 fat-suppression methods for black-blood T2-weighted fast spin-echo (FSE), which are as follows: (a) short T1 inversion recovery (STIR; FSE-STIR) and (b) spectral adiabatic inversion recovery (SPAIR; FSE-SPAIR), for detection of acute myocardial injury.BackgroundEdema-sensitive T2-weighted FSE cardiac magnetic resonance (CMR) imaging is useful in detecting acute myocardial injury but may experience reduced myocardial signal and signal dropout. The SPAIR pulse aims to eliminate artifacts associated with the STIR pulse.Materials And MethodsA total of 65 consecutive patients referred for CMR evaluation of myocardial structure and function underwent FSE-STIR and FSE-SPAIR, in addition to cine and late gadolinium enhancement (LGE) CMR. T2-weighted FSE images were independently evaluated by 2 readers for image quality and artifacts (Likert scale of 1-5; best-worst) and presence of increased myocardial signal suggestive of edema. In addition, clinical CMR interpretation, incorporating all CMR sequences available, was recorded for comparison. Diagnostic performance of each T2-weighted sequence was measured using recent (<30 days) troponin elevation greater than 2 times the upper limit of normal as the reference standard for acute myocardial injury.ResultsOf the 65 patients, there were 21 (32%) with acute myocardial injury. Image quality and artifact scores were significantly better with FSE-SPAIR compared with FSE-STIR (2.15 vs 2.68, P < 0.01; 2.62 vs 3.05, P < 0.01, respectively). The sensitivity, specificity, positive predictive value, and negative predictive value for acute myocardial injury were as follows: 29%, 93%, 67%, and 73% for FSE-SPAIR; 38%, 91%, 67%, and 75% for FSE-STIR; 71%, 98%, 94%, and 88% for clinical interpretation including LGE, T2, and wall motion. There was a statistically significant difference in sensitivity between the clinical interpretation and each of the T2-weighted sequences but not between each T2-weighted sequence.ConclusionsAlthough FSE-SPAIR demonstrated significantly improved image quality and decreased artifacts, isolated interpretations of each T2-weighted technique demonstrated high specificity but overall low sensitivity for the detection of myocardial injury, with no difference in accuracy between the techniques. However, real-world interpretation in combination with cine and LGE CMR methods significantly improves the overall sensitivity and diagnostic performance.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.