• Academic radiology · Mar 2007

    Comparative Study

    Manually adjusted versus vendor-preset definition of metabolite boundaries impact on proton metabolite ratios.

    • Myria Petrou, Pia C Sundgren, Yuxi Pang, Suzan Rohrer, Bradley Foerster, and Thomas L Chenevert.
    • Department of Radiology, University of Michigan Health System, 1500 E. Medical Center Drive, Ann Arbor, MIMI 48109-0030, USA. mpetrou@med.umich.edu
    • Acad Radiol. 2007 Mar 1; 14 (3): 340-3.

    Rationale And ObjectivesMetabolite peak boundary definition is an important postprocessing step in proton magnetic resonance spectroscopy (1H-MRS). We compare metabolite ratios calculated using three different postprocessing strategies: software-rendered default peak boundaries, manually adjusted peak boundaries and a curve-fitting program. The first two of these methods are commercially available.Materials And MethodsA total of 42 spectra acquired on a 1.5-T MR unit using two-dimensional chemical shift proton MR spectroscopy (TR/TE = 1500/144 ms) were analyzed. Choline (Cho), creatine (Cr), and N-acetylaspartate (NAA) relative concentrations were derived and the following metabolite ratios were calculated: Cho/Cr, Cho/NAA, and NAA/Cr. Metabolite concentrations/ratios were calculated using (a) default peak boundaries rendered by commercially available, postprocessing software (Functool 2000, version 2.6.0); (b) manually adjusted peak boundaries by an experienced spectroscopist, using an option offered by the same commercially available software; and (c) an offline in-house curve-fitting program. Measurements obtained with method (c) were considered as the "gold standard." Paired t-tests comparing default and adjusted metabolite ratios, as well as default and adjusted ratios with their respective curve-fit values were used for statistical analysis.ResultsSignificant differences between default and manually adjusted values were found for Cho/Cr ratios <1.5 and for all Cho/NAA ratios. For Cho/Cr ratios <1.5, significant differences between default and curve-fit values were present; this was not the case when comparing manually adjusted and curve-fit values. Default and manually adjusted Cho/NAA ratios were significantly higher than corresponding curve-fit ratios. Manually adjusted values were, however, closer to the curve-fit values. No significant differences were noted between default and adjusted NAA/Cr values; default and manually adjusted ratios were significantly lower than curve-fit ratios.ConclusionThere can be significant differences in metabolite ratios calculated using default and manually adjusted peak limits in proton MR spectroscopy. Furthermore, Cho/Cr and NAA/Cho adjusted metabolite ratios are closer to curve-fit values, which are considered the most accurate of the three.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.