• Resuscitation · Aug 2021

    Observational Study

    Predicting early recovery of consciousness after cardiac arrest supported by quantitative electroencephalography.

    • Andrew Bauerschmidt, Andrey Eliseyev, Kevin W Doyle, Angela Velasquez, Jennifer Egbebike, Wendy Chiu, Vedika Kumar, Ayham Alkhachroum, Caroline Der Nigoghossian, Fawaz Al-Mufti, LeRoy Rabbani, Daniel Brodie, Clio Rubinos, Soojin Park, David Roh, Sachin Agarwal, and Jan Claassen.
    • Department of Neurology, Columbia University Medical Center, New York, NY, USA.
    • Resuscitation. 2021 Aug 1; 165: 130137130-137.

    ObjectiveTo determine the ability of quantitative electroencephalography (QEEG) to improve the accuracy of predicting recovery of consciousness by post-cardiac arrest day 10.MethodsUnconscious survivors of cardiac arrest undergoing daily clinical and EEG assessments through post-cardiac arrest day 10 were studied in a prospective observational cohort study. Power spectral density, local coherence, and permutation entropy were calculated from daily EEG clips following a painful stimulus. Recovery of consciousness was defined as following at least simple commands by day 10. We determined the impact of EEG metrics to predict recovery when analyzed with established predictors of recovery using partial least squares regression models. Explained variance analysis identified which features contributed most to the predictive model.Results367 EEG epochs from 98 subjects were analyzed in conjunction with clinical measures. Highest prediction accuracy was achieved when adding QEEG features from post-arrest days 4-6 to established predictors (area under the receiver operating curve improved from 0.81 ± 0.04 to 0.86 ± 0.05). Prediction accuracy decreased from 0.84 ± 0.04 to 0.79 ± 0.04 when adding QEEG features from post-arrest days 1-3. Patients with recovery of command-following by day 10 showed higher coherence across the frequency spectrum and higher centro-occipital delta-frequency spectral power by days 4-6, and globally-higher theta range permutation entropy by days 7-10.ConclusionsAdding quantitative EEG metrics to established predictors of recovery allows modest improvement of prediction accuracy for recovery of consciousness, when obtained within a week of cardiac arrest. Further research is needed to determine the best strategy for integration of QEEG data into prognostic models in this patient population.Copyright © 2021. Published by Elsevier B.V.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…