• European radiology · Dec 2020

    Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI.

    • Muhammad Arif, Ivo G Schoots, Jose Castillo Tovar, Chris H Bangma, Gabriel P Krestin, Monique J Roobol, Wiro Niessen, and Jifke F Veenland.
    • Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Wytemaweg 80, Room Na 2512 Erasmus MC, 3015 CN, Rotterdam, The Netherlands. a.muhammad@erasmusmc.nl.
    • Eur Radiol. 2020 Dec 1; 30 (12): 6582-6592.

    ObjectivesTo develop an automatic method for identification and segmentation of clinically significant prostate cancer in low-risk patients and to evaluate the performance in a routine clinical setting.MethodsA consecutive cohort (n = 292) from a prospective database of low-risk patients eligible for the active surveillance was selected. A 3-T multi-parametric MRI at 3 months after inclusion was performed. Histopathology from biopsies was used as reference standard. MRI positivity was defined as PI-RADS score ≥ 3, histopathology positivity was defined as ISUP grade ≥ 2. The selected cohort contained four patient groups: (1) MRI-positive targeted biopsy-positive (n = 116), (2) MRI-negative systematic biopsy-negative (n = 55), (3) MRI-positive targeted biopsy-negative (n = 113), (4) MRI-negative systematic biopsy-positive (n = 8). Group 1 was further divided into three sets and a 3D convolutional neural network was trained using different combinations of these sets. Two MRI sequences (T2w, b = 800 DWI) and the ADC map were used as separate input channels for the model. After training, the model was evaluated on the remaining group 1 patients together with the patients of groups 2 and 3 to identify and segment clinically significant prostate cancer.ResultsThe average sensitivity achieved was 82-92% at an average specificity of 43-76% with an area under the curve (AUC) of 0.65 to 0.89 for different lesion volumes ranging from > 0.03 to > 0.5 cc.ConclusionsThe proposed deep learning computer-aided method yields promising results in identification and segmentation of clinically significant prostate cancer and in confirming low-risk cancer (ISUP grade ≤ 1) in patients on active surveillance.Key Points• Clinically significant prostate cancer identification and segmentation on multi-parametric MRI is feasible in low-risk patients using a deep neural network. • The deep neural network for significant prostate cancer localization performs better for lesions with larger volumes sizes (> 0.5 cc) as compared to small lesions (> 0.03 cc). • For the evaluation of automatic prostate cancer segmentation methods in the active surveillance cohort, the large discordance group (MRI positive, targeted biopsy negative) should be included.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.