-
- Marcelo V W Zibetti, Patricia M Johnson, Azadeh Sharafi, Kerstin Hammernik, Florian Knoll, and Ravinder R Regatte.
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, 660 1st Ave, 4th Floor, New York, NY, 10016, USA. Marcelo.WustZibetti@nyulangone.org.
- Sci Rep. 2020 Nov 5; 10 (1): 19144.
AbstractIn this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame (T1ρ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T1ρ maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T1ρ parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T1ρ mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T1ρ mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.