• Magn Reson Med · Jul 2018

    Multicenter Study

    Frequency and phase correction for multiplexed edited MRS of GABA and glutathione.

    • Mark Mikkelsen, Muhammad G Saleh, Jamie Near, Kimberly L Chan, Tao Gong, Ashley D Harris, Georg Oeltzschner, Nicolaas A J Puts, Kim M Cecil, Iain D Wilkinson, and Edden Richard A E RAE Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. .
    • Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
    • Magn Reson Med. 2018 Jul 1; 80 (1): 21-28.

    PurposeDetection of endogenous metabolites using multiplexed editing substantially improves the efficiency of edited magnetic resonance spectroscopy. Multiplexed editing (i.e., performing more than one edited experiment in a single acquisition) requires a tailored, robust approach for correction of frequency and phase offsets. Here, a novel method for frequency and phase correction (FPC) based on spectral registration is presented and compared against previously presented approaches.MethodsOne simulated dataset and 40 γ-aminobutyric acid-/glutathione-edited HERMES datasets acquired in vivo at three imaging centers were used to test four FPC approaches: no correction; spectral registration; spectral registration with post hoc choline-creatine alignment; and multistep FPC. The performance of each routine for the simulated dataset was assessed by comparing the estimated frequency/phase offsets against the known values, whereas the performance for the in vivo data was assessed quantitatively by calculation of an alignment quality metric based on choline subtraction artifacts.ResultsThe multistep FPC approach returned corrections that were closest to the true values for the simulated dataset. Alignment quality scores were on average worst for no correction, and best for multistep FPC in both the γ-aminobutyric acid- and glutathione-edited spectra in the in vivo data.ConclusionsMultistep FPC results in improved correction of frequency/phase errors in multiplexed γ-aminobutyric acid-/glutathione-edited magnetic resonance spectroscopy experiments. The optimal FPC strategy is experiment-specific, and may even be dataset-specific. Magn Reson Med 80:21-28, 2018. © 2017 International Society for Magnetic Resonance in Medicine.© 2017 International Society for Magnetic Resonance in Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.