-
J Magn Reson Imaging · Oct 2004
Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy.
- R Jason Stafford, Roger E Price, Chris J Diederich, Marko Kangasniemi, Lars E Olsson, and John D Hazle.
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA.
- J Magn Reson Imaging. 2004 Oct 1; 20 (4): 706-14.
PurposeTo develop a multiplanar magnetic resonance temperature imaging (MRTI) technique based on interleaved gradient-echo echo-planar imaging (EPI), verify in phantom, develop software tools to process and display data on a clinical scanner in near real-time, and demonstrate feasibility to monitor ultrasound thermal ablation therapy in vivo.Materials And MethodsTemperature estimation used complex phase-difference subtraction of the EPI MRTI data to indirectly measure the temperature-dependent water proton-resonance-frequency shift. Software tools were developed to run on a clinical 1.5-T MR scanner that processed and displayed relevant temperature and thermal dosimetry data during the course of thermal ablation treatments in canine brain and prostate in vivo.ResultsEPI MRTI provided multi-planar acquisitions and increased temperature sensitivity and lipid suppression. Relative to a single-plane fast gradient-echo MRTI sequence at comparable spatial and temporal resolutions in phantom, EPI MRTI demonstrated a three-fold increase in sensitivity and slice coverage per TR. In vivo monitoring of ultrasound thermal ablation therapy in canine brain and prostate demonstrated the usefulness of the temperature and thermal dose information.ConclusionMulti-planar MRTI allowed progression of thermal damage to be monitored and treatment parameters adjusted in near real-time (less than five second delay). EPI MRTI is an effective multi-planar monitoring method during ultrasound thermal ablation procedures.Copyright 2004 Wiley-Liss, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.