• Magn Reson Imaging · Jul 2004

    Single-shot fast spin-echo diffusion tensor imaging of the brain and spine with head and phased array coils at 1.5 T and 3.0 T.

    • Duan Xu, Roland G Henry, Pratik Mukherjee, Lucas Carvajal, Steven P Miller, A James Barkovich, and Daniel B Vigneron.
    • Department of Radiology, University of California, San Francisco CA, USA.
    • Magn Reson Imaging. 2004 Jul 1; 22 (6): 751-9.

    AbstractIn this study, we investigated the use of a single-shot fast spin-echo-based sequence to perform diffusion tensor imaging (DTI) with improved anatomic fidelity through the entire brain and the cervical spine. Traditionally, diffusion tensor images have been acquired by single-shot echo-planar imaging (EPI) methods in which large distortions result from magnetic susceptibility effects, especially near air-tissue interfaces. These distortions can be problematic, especially in anterior and inferior portions of the brain, and they also can severely limit applications in the spine. At higher magnetic fields these magnetic susceptibility artifacts are increased. The single-shot fast spin-echo (SSFSE) method used in this study utilizes radiofrequency rephasing in the transverse plane and thus provides diffusion images with negligible distortion even at 3 Tesla. In addition, the SSFSE sequence does not require multiple fast-receivers, which are not available on many magnetic resonance (MR) systems. Phased array coils were used to increase the signal-to-noise ratio of the images, offering a major inherent advantage in diffusion tensor imaging of the spine and brain. The mean diffusion measurements obtained with the SSFSE acquisition were not statistically different (p > 0.05) from EPI-based acquisitions. Compared to routine T(2)-weighted MR images, the DTI-EPI sequence showed up to 20% in elongation of the brain in the anterior-posterior direction on a sagittal image due to magnetic susceptibility distortions, whereas in the DTI-SSFSE, the image distortions were negligible. The diffusion tensor SSFSE method was also able to assess diffusion abnormalities in a brain stem hemorrhage, unaffected by the spatial distortions that limited conventional EPI acquisition.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.