• European radiology · Jan 2020

    Whole-lesion histogram and texture analyses of breast lesions on inline quantitative DCE mapping with CAIPIRINHA-Dixon-TWIST-VIBE.

    • Kun Sun, Hong Zhu, Weimin Chai, Ying Zhan, Dominik Nickel, Robert Grimm, Caixia Fu, and Fuhua Yan.
    • Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
    • Eur Radiol. 2020 Jan 1; 30 (1): 57-65.

    PurposeTo investigate the diagnostic capability of whole-lesion (WL) histogram and texture analysis of dynamic contrast-enhanced (DCE) MRI inline-generated quantitative parametric maps using CAIPIRINHA-Dixon-TWIST-VIBE (CDTV) to differentiate malignant from benign breast lesions and breast cancer subtypes.Materials And MethodsFrom February 2018 to November 2018, DCE MRI using CDTV was performed on 211 patients. The inline-generated parametric maps included Ktrans, kep, Ve, and IAUGC60. Histogram and texture features were extracted from the above parametric maps respectively based on a WL analysis. Student's t tests, one-way ANOVAs, Mann-Whitney U tests, Jonckheere-Terpstra tests, and ROC curves were used for statistical analysis.ResultsCompared with benign breast lesions, malignant breast lesions showed significantly higher Ktrans_median, 5th percentile, entropy, and diff-entropy, IAUGC60_median, 5th percentile, entropy, and diff-entropy, kep_mean, median, 5th percentile, entropy, and diff-entropy, and Ve_95th percentile, diff-variance, and contrast, and significantly lower kep_skewness and Ve_SD, entropy, diff-entropy, and skewness (all p ≤ 0.011). The combination of all the extracted parameters yielded an AUC of 0.85 (sensitivity 76%, specificity 86%). kep_contrast showed a significant difference among different subtypes of breast cancer (p = 0.006). kep_skewness showed a significant difference between lymph node-positive and lymph node-negative breast cancer (p = 0.007). The IAGC60_5th percentile had an AUC of 0.71 (sensitivity 50%, specificity 91%) for differentiating between high- and low-proliferation groups of breast cancer.ConclusionsThe WL histogram and texture analyses of CDTV-DCE-derived parameters may give additional information for further evaluation of breast cancer.Key Points• Inline DCE mapping with CDTV is effective and time-saving. • WL histogram and texture-extracted features could distinguish breast cancer from benign lesions accurately. • kep_contrast, kep_skewness, and IAUGC60_5th percentile could predict breast cancer subtypes, lymph node metastasis, and proliferation abilities, respectively.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…