-
Comparative Study
Biomechanics of a Posterior Lumbar Motion Stabilizing Device: In Vitro Comparison to Intact and Fused Conditions.
- Luis Perez-Orribo, James F Zucherman, Kenneth Y Hsu, Phillip M Reyes, Nestor G Rodriguez-Martinez, and Neil R Crawford.
- *Barrow Neurological Institute†St. Mary's Medical Center‡San Francisco Orthopaedic Surgeons.
- Spine. 2016 Jan 1; 41 (2): E55-63.
Study DesignNondestructive flexibility tests were performed in vitro, comparing multiple conditions of fixation in a single group of specimens.ObjectiveTo compare the biomechanical behavior of the lumbar spine in the intact condition, after implanting a novel motion stabilizer, and after implanting a rigid fixator.Summary Of Background DataTwo specific scenarios that may benefit from dynamic lumbar stabilization are single-level moderate instability, where the stabilizing tissues are relatively incompetent, and juxta-level to fusion, where the last instrumented level requires intermediate stiffness ("topping off") to prevent transfer of high stresses from the stiffer fusion construct to the intact adjacent levels. Both scenarios were evaluated in vitro.MethodsSeven human cadaveric L2-S1 segments were tested (1) intact, (2) after moderate destabilization, (3) after 2-level hybrid posterior fixation, consisting of bilateral dynamic pedicle screws at L4 interconnected with rigid rods to standard pedicle screws at L5 and S1, (4) after 2-level rigid fixation, (5) after 1-level (L4-L5) dynamic fixation, and (6) after 1-level rigid fixation. In each condition, angular range of motion (ROM) and sagittal instantaneous axis of rotation (IAR) were assessed.ResultsIn 1-level constructs, dynamic hardware allowed 104% of intact ROM, whereas rigid hardware allowed 49% of intact ROM. Relative to the intact, the IAR was shifted significantly farther posterior by rigid 1-level instrumentation than by dynamic 1-level instrumentation. In 2-level constructs, the dynamic level allowed significantly greater ROM than the rigid level in all directions but allowed significantly less ROM than the intact level in all directions except axial rotation.ConclusionDynamic instrumentation shifted the IAR less than rigid instrumentation, providing more favorable kinematics. This dynamic stabilizer provided 1-level ROM that was close to intact ROM during all loading modes in vitro. In the topping-off construct, the dynamic segment allowed intermediate ROM to give balanced transitional flexibility.Level Of EvidenceN/A.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.