• J. Immunol. · Jun 2008

    Lysophospholipids and ATP mutually suppress maturation and release of IL-1 beta in mouse microglial cells using a Rho-dependent pathway.

    • Takato Takenouchi, Yoshifumi Iwamaru, Shuei Sugama, Mitsuru Sato, Makoto Hashimoto, and Hiroshi Kitani.
    • Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan.
    • J. Immunol. 2008 Jun 15; 180 (12): 7827-39.

    AbstractThe P2X7 receptor (P2X7R), an ATP-gated ion channel, plays essential roles in the release and maturation of IL-1beta in microglial cells in the brain. Previously, we found that lysophosphatidylcholine (LPC) potentiated P2X7R-mediated intracellular signals in microglial cells. In this study, we determined whether the lysophospholipids, i.e., LPC and sphingosylphosphorylcholine (SPC), modulate the ATP-induced release and processing of IL-1beta mediated by P2X7R in mouse MG6 microglial cells. LPC or SPC alone induced the release of precursor (pro-IL-1beta) and mature IL-1beta (mIL-1beta) from LPS-primed MG6 cells, possibly due to lytic functions. However, these lysophospholipids inhibited ATP-induced caspase-1 activation that is usually followed by the release of mIL-1beta. Conversely, ATP inhibited the release of pro-IL-1beta and mIL-1beta induced by LPC/SPC. This suggests that lysophospholipids and ATP mutually suppressed each function to release IL-1beta. P2X7R activation resulted in microtubule reorganization in the MG6 cells that was blocked in the presence of LPC and SPC. LPC/SPC reduced the amount of activated RhoA after stimulation with ATP, implying that these lysophospholipids block ATP-induced microtubule reorganization by interfering with RhoA activation. In addition, the microtubule inhibitor colchicine inhibited ATP-induced release of mIL-1beta similar to that of LPC and SPC. This suggests that the impairment of the microtubule reassembly may be associated with the inhibitory effects of LPC/SPC on ATP-induced mIL-1beta release. Mutual suppression by ATP and LPC/SPC on the maturation of IL-1beta was observed in LPS-primed primary microglia. Collectively, these data suggest opposing functions by lysophospholipids, either proinflammatory or anti-inflammatory, in regard to the maturation and release of IL-1beta from microglial cells.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.