• Eur J Radiol Open · Jan 2019

    Evaluation of diagnostic value and T2-weighted three-dimensional isotropic turbo spin-echo (3D-SPACE) image quality in comparison with T2-weighted two-dimensional turbo spin-echo (2D-TSE) sequences in lumbar spine MR imaging.

    • Jomleh Hossein, Faeghi Fariborz, Rasteh Mehrnaz, and Rafiei Babak.
    • School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
    • Eur J Radiol Open. 2019 Jan 1; 6: 36-41.

    Purposeto evaluate diagnostic value and image quality of T2-weighted Three-dimensional isotropic turbo spin-echo (SPACE) in comparison with T2-weighted two-dimensional turbo spin-echo (TSE) sequences for comprehensive evaluation of lumbar spine pathologies.Materials And MethodsThirty-five participants with lumbar discopathy were examined on a 1.5-T MRI system with both 2D TSE and 3D SPACE sequences. Obtained images were analyzed with synedra view personal (V 17.0.0.2) software in terms of calculating image quality factors such as signal to noise ratio (SNR) and contrast to noise ratio (CNR) for selected regions of interest. In addition, images were referred to radiologists to report their pathologic indexes. The visibility of anatomical structures in the 3D and 2D sequences was qualitatively assessed by two radiologists independently. Cohen's kappa (k) and Wilcoxon signed rank test was used for the statistical analysis.ResultsIn this study, the 3D SPACE T2-weighted sequence showed significant higher SNR and CNR as well as visibility in all of the regions of interest except vertebrae and intervertebral discs (p-value < 0.05). Inter-observer agreement for visibility of regions of interest was substantial and perfect (k > 0.6). Also, inter-observer and inter-method agreements for pathologic indexes were substantial and perfect for all of the pathologic indexes (k > 0.6). Inter-observer agreement for 3D SPACE sequence was higher (k = 0.793) in comparison with 2D-TSE sequence (k = 0.603). 3D SPACE sequence and its multi-planar reconstructions (MPR) scan time were less (192 s) than 2D TSE in the sagittal, axial and coronal planes (209 s).Conclusion3D SPACE sequence for lumbar spine MRI proved to have higher SNR, CNR, and visibility for all regions of lumbar spine except vertebrae and disc. Inter-observer and inter-method agreements for pathologic indexes between 3D SPACE and 2D TSE sequences were substantial and 3D SPACE had a higher inter-observer agreement and less scan time. Therefore, T2 weighted 3D SPACE sequence, and its MPR might be an excellent alternative for 2D TSE in sagittal, axial, and coronal planes, especially for patients with abnormal curvature of the lumbar spine.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…