• European radiology · Aug 2020

    Review Meta Analysis

    Diagnostic accuracy and potential covariates for machine learning to identify IDH mutations in glioma patients: evidence from a meta-analysis.

    • Jing Zhao, Yingqian Huang, Yukun Song, Dingxiang Xie, Manshi Hu, Haishan Qiu, and Jianping Chu.
    • Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58, The Second Zhongshan Road, Guangzhou, 510080, Guangdong, China.
    • Eur Radiol. 2020 Aug 1; 30 (8): 4664-4674.

    ObjectivesTo assess the diagnostic accuracy of machine learning (ML) in predicting isocitrate dehydrogenase (IDH) mutations in patients with glioma and to identify potential covariates that could influence the diagnostic performance of ML.MethodsA systematic search of PubMed, Web of Science, and the Cochrane library up to 1 August 2019 was conducted to collect all the articles investigating the diagnostic performance of ML for prediction of IDH mutation in glioma. The search strategy combined synonyms for 'machine learning', 'glioma', and 'IDH'. Pooled sensitivity, specificity, and their 95% confidence intervals (CIs) were calculated, and the area under the receiver operating characteristic curve (AUC) was obtained.ResultsNine original articles assessing a total of 996 patients with glioma were included. Among these studies, five divided the participants into training and validation sets, while the remaining four studies only had a training set. The AUC of ML for predicting IDH mutation in the training and validation sets was 93% (95% CI 91-95%) and 89% (95% CI 86-92%), respectively. The pooled sensitivity and specificity were, respectively, 87% (95% CI 82-91%) and 88% (95% CI 83-92%) in the training set and 87% (95% CI 76-93%) and 90% (95% CI 72-97%) in the validation set. In subgroup analyses in the training set, the combined use of clinical and imaging features with ML yielded higher sensitivity (90% vs. 83%) and specificity (90% vs. 82%) than the use of imaging features alone. In addition, ML performed better for high-grade gliomas than for low-grade gliomas, and ML that used conventional MRI sequences demonstrated higher specificity for predicting IDH mutation than ML using conventional and advanced MRI sequences.ConclusionsML demonstrated an excellent diagnostic performance in predicting IDH mutation of glioma. Clinical information, MRI sequences, and glioma grade were the main factors influencing diagnostic specificity.Key Points• Machine learning demonstrated an excellent diagnostic performance for prediction of IDH mutation in glioma (the pooled sensitivity and specificity were 88% and 87%, respectively). • Machine learning that used conventional MRI sequences demonstrated higher specificity in predicting IDH mutation than that based on conventional and advanced MRI sequences (89% vs. 85%). • Integration of clinical and imaging features in machine learning yielded a higher sensitivity (90% vs. 83%) and specificity (90% vs. 82%) than that achieved by using imaging features alone.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.