• Diagnostics (Basel) · May 2020

    Using Machine Learning to Predict Bacteremia in Febrile Children Presented to the Emergency Department.

    • Chih-Min Tsai, Chun-Hung Richard Lin, Huan Zhang, I-Min Chiu, Chi-Yung Cheng, Hong-Ren Yu, and Ying-Hsien Huang.
    • Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan.
    • Diagnostics (Basel). 2020 May 15; 10 (5).

    AbstractBlood culture is frequently used to detect bacteremia in febrile children. However, a high rate of negative or false-positive blood culture results is common at the pediatric emergency department (PED). The aim of this study was to use machine learning to build a model that could predict bacteremia in febrile children. We conducted a retrospective case-control study of febrile children who presented to the PED from 2008 to 2015. We adopted machine learning methods and cost-sensitive learning to establish a predictive model of bacteremia. We enrolled 16,967 febrile children with blood culture tests during the eight-year study period. Only 146 febrile children had true bacteremia, and more than 99% of febrile children had a contaminant or negative blood culture result. The maximum area under the curve of logistic regression and support vector machines to predict bacteremia were 0.768 and 0.832, respectively. Using the predictive model, we can categorize febrile children by risk value into five classes. Class 5 had the highest probability of having bacteremia, while class 1 had no risk. Obtaining blood cultures in febrile children at the PED rarely identifies a causative pathogen. Prediction models can help physicians determine whether patients have bacteremia and may reduce unnecessary expenses.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…