• OMICS · May 2020

    Review

    New Machine Learning Applications to Accelerate Personalized Medicine in Breast Cancer: Rise of the Support Vector Machines.

    • Mustafa Erhan Ozer, Pemra Ozbek Sarica, and Kazim Yalcin Arga.
    • Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.
    • OMICS. 2020 May 1; 24 (5): 241-246.

    AbstractArtificial intelligence, machine learning, health care robots, and algorithms for clinical decision-making are currently being sought after in diverse fields of clinical medicine and bioengineering. The field of personalized medicine stands to benefit from new technologies so as to harness the omics big data, for example, to individualize and accelerate cancer diagnostics and therapeutics in particular. In this overarching context, breast cancer is one of the most common malignancies worldwide with multiple underlying molecular etiologies and each subtype displaying diverse clinical outcomes. Disease stratification for breast cancer is, therefore, vital to its effective and individualized clinical care. The support vector machine (SVM) is a rising machine learning approach that offers robust classification of high-dimensional big data into small numbers of data points (support vectors), achieving differentiation of subgroups in a short amount of time. Considering the rapid timelines required for both diagnosis and treatment of most aggressive cancers, this new machine learning technique has important clinical and public applications and implications for high-throughput data analysis and contextualization. This expert review describes and examines, first, the SVM models employed to forecast breast cancer subtypes using diverse systems science data, including transcriptomics, epigenetics, proteomics, and radiomics, as well as biological pathway, clinical, pathological, and biochemical data. Then, we compare the performance of the present SVM and other diagnostic and therapeutic prediction models across the data types. We conclude by emphasizing that data integration is a critical bottleneck in systems science, cancer research and development, and health care innovation and that SVM and machine learning approaches offer new solutions and ways forward in biomedical, bioengineering, and clinical applications.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.