• PLoS medicine · Dec 2019

    Ambient particulate matter pollution and adult hospital admissions for pneumonia in urban China: A national time series analysis for 2014 through 2017.

    • Yaohua Tian, Hui Liu, Yiqun Wu, Yaqin Si, Man Li, Yao Wu, Xiaowen Wang, Mengying Wang, Libo Chen, Chen Wei, Tao Wu, Pei Gao, and Yonghua Hu.
    • Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
    • PLoS Med. 2019 Dec 1; 16 (12): e1003010.

    BackgroundThe effects of ambient particulate matter (PM) pollution on pneumonia in adults are inconclusive, and few scientific data on a national scale have been generated in low- or middle-income countries, despite their much higher PM concentrations. We aimed to examine the association between PM levels and hospital admissions for pneumonia in Chinese adults.Methods And FindingsA nationwide time series study was conducted in China between 2014 and 2017. Information on daily hospital admissions for pneumonia for 2014-2017 was collected from the database of Urban Employee Basic Medical Insurance (UEBMI), which covers 282.93 million adults. Associations of PM concentrations and hospital admissions for pneumonia were estimated for each city using a quasi-Poisson regression model controlling for time trend, temperature, relative humidity, day of the week, and public holiday and then pooled by random-effects meta-analysis. Meta-regression models were used to investigate potential effect modifiers, including cities' annual-average air pollutants concentrations, temperature, relative humidity, gross domestic product (GDP) per capita, and coverage rates by the UEBMI. More than 4.2 million pneumonia admissions were identified in 184 Chinese cities during the study period. Short-term elevations in PM concentrations were associated with increased pneumonia admissions. At the national level, a 10-μg/m3 increase in 3-day moving average (lag 0-2) concentrations of PM2.5 (PM ≤2.5 μm in aerodynamic diameter) and PM10 (PM ≤10 μm in aerodynamic diameter) was associated with 0.31% (95% confidence interval [CI] 0.15%-0.46%, P < 0.001) and 0.19% (0.11%-0.30%, P < 0.001) increases in hospital admissions for pneumonia, respectively. The effects of PM10 were stronger in cities with higher temperatures (percentage increase, 0.031%; 95% CI 0.003%-0.058%; P = 0.026) and relative humidity (percentage increase, 0.011%; 95% CI 0%-0.022%; P = 0.045), as well as in the elderly (percentage increase, 0.10% [95% CI 0.02%-0.19%] for people aged 18-64 years versus 0.32% [95% CI 0.22%-0.39%] for people aged ≥75 years; P < 0.001). The main limitation of the present study was the unavailability of data on individual exposure to PM pollution.ConclusionsOur findings suggest that there are significant short-term associations between ambient PM levels and increased hospital admissions for pneumonia in Chinese adults. These findings support the rationale that further limiting PM concentrations in China may be an effective strategy to reduce pneumonia-related hospital admissions.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…