• Abdom Radiol (NY) · Oct 2019

    Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study.

    • Ankur Goyal, Abdul Razik, Devasenathipathy Kandasamy, Amlesh Seth, Prasenjit Das, Balaji Ganeshan, and Raju Sharma.
    • Department of Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
    • Abdom Radiol (NY). 2019 Oct 1; 44 (10): 3336-3349.

    PurposeThe study evaluated the usefulness of magnetic resonance imaging (MRI) texture parameters in differentiating clear cell renal carcinoma (CC-RCC) from non-clear cell carcinoma (NC-RCC) and in the histological grading of CC-RCC.Materials And MethodsAfter institutional ethical approval, this retrospective study analyzed 33 patients with 34 RCC masses (29 CC-RCC and five NC-RCC; 19 low-grade and 10 high-grade CC-RCC), who underwent MRI between January 2011 and December 2012 on a 1.5-T scanner (Avanto, Siemens, Erlangen, Germany). The MRI protocol included T2-weighted imaging (T2WI), diffusion-weighted imaging [DWI; at b 0, 500 and 1000 s/mm2 with apparent diffusion coefficient (ADC) maps] and T1-weighted pre and postcontrast [corticomedullary (CM) and nephrographic (NG) phase] acquisition. MR texture analysis (MRTA) was performed using the TexRAD research software (Feedback Medical Ltd., Cambridge, UK) by a single reader who placed free-hand polygonal region of interest (ROI) on the slice showing the maximum viable tumor. Filtration histogram-based texture analysis was used to generate six first-order statistical parameters [mean intensity, standard deviation (SD), mean of positive pixels (MPP), entropy, skewness and kurtosis] at five spatial scaling factors (SSF) as well as on the unfiltered image. Mann-Whitney test was used to compare the texture parameters of CC-RCC versus NC-RCC, and high-grade versus low-grade CC-RCC. P value < 0.05 was considered significant. A 3-step feature selection was used to obtain the best texture metrics for each MRI sequence and included the receiver-operating characteristic (ROC) curve analysis and Pearson's correlation test.ResultsThe best performing texture parameters in differentiating CC-RCC from NC-RCC for each sequence included (area under the curve in parentheses): entropy at SSF 4 (0.807) on T2WI, SD at SSF 4 (0.814) on DWI b500, SD at SSF 6 (0.879) on DWI b1000, mean at SSF 0 (0.848) on ADC, skewness at SSF 2 (0.854) on T1WI and skewness at SSF 3 (0.908) on CM phase. In differentiating high from low-grade CC-RCC, the best parameters were: entropy at SSF 6 (0.823) on DWI b1000, mean at SSF 3 (0.889) on CM phase and MPP at SSF 5 (0.870) on NG phase.ConclusionSeveral MR texture parameters showed excellent diagnostic performance (AUC > 0.8) in differentiating CC-RCC from NC-RCC, and high-grade from low-grade CC-RCC. MRTA could serve as a useful non-invasive tool for this purpose.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…