-
- Ankur Goyal, Abdul Razik, Devasenathipathy Kandasamy, Amlesh Seth, Prasenjit Das, Balaji Ganeshan, and Raju Sharma.
- Department of Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
- Abdom Radiol (NY). 2019 Oct 1; 44 (10): 3336-3349.
PurposeThe study evaluated the usefulness of magnetic resonance imaging (MRI) texture parameters in differentiating clear cell renal carcinoma (CC-RCC) from non-clear cell carcinoma (NC-RCC) and in the histological grading of CC-RCC.Materials And MethodsAfter institutional ethical approval, this retrospective study analyzed 33 patients with 34 RCC masses (29 CC-RCC and five NC-RCC; 19 low-grade and 10 high-grade CC-RCC), who underwent MRI between January 2011 and December 2012 on a 1.5-T scanner (Avanto, Siemens, Erlangen, Germany). The MRI protocol included T2-weighted imaging (T2WI), diffusion-weighted imaging [DWI; at b 0, 500 and 1000 s/mm2 with apparent diffusion coefficient (ADC) maps] and T1-weighted pre and postcontrast [corticomedullary (CM) and nephrographic (NG) phase] acquisition. MR texture analysis (MRTA) was performed using the TexRAD research software (Feedback Medical Ltd., Cambridge, UK) by a single reader who placed free-hand polygonal region of interest (ROI) on the slice showing the maximum viable tumor. Filtration histogram-based texture analysis was used to generate six first-order statistical parameters [mean intensity, standard deviation (SD), mean of positive pixels (MPP), entropy, skewness and kurtosis] at five spatial scaling factors (SSF) as well as on the unfiltered image. Mann-Whitney test was used to compare the texture parameters of CC-RCC versus NC-RCC, and high-grade versus low-grade CC-RCC. P value < 0.05 was considered significant. A 3-step feature selection was used to obtain the best texture metrics for each MRI sequence and included the receiver-operating characteristic (ROC) curve analysis and Pearson's correlation test.ResultsThe best performing texture parameters in differentiating CC-RCC from NC-RCC for each sequence included (area under the curve in parentheses): entropy at SSF 4 (0.807) on T2WI, SD at SSF 4 (0.814) on DWI b500, SD at SSF 6 (0.879) on DWI b1000, mean at SSF 0 (0.848) on ADC, skewness at SSF 2 (0.854) on T1WI and skewness at SSF 3 (0.908) on CM phase. In differentiating high from low-grade CC-RCC, the best parameters were: entropy at SSF 6 (0.823) on DWI b1000, mean at SSF 3 (0.889) on CM phase and MPP at SSF 5 (0.870) on NG phase.ConclusionSeveral MR texture parameters showed excellent diagnostic performance (AUC > 0.8) in differentiating CC-RCC from NC-RCC, and high-grade from low-grade CC-RCC. MRTA could serve as a useful non-invasive tool for this purpose.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.