• Neuroscience research · Sep 2008

    GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.

    • Masatsugu Masuda, Kenji F Tanaka, Sho Kanzaki, Kenichiro Wakabayashi, Naoki Oishi, Takafumi Suzuki, Kazuhiro Ikenaka, and Kaoru Ogawa.
    • Department of Otolaryngology, Keio University, School of Medicine, Tokyo, Japan. masoeur13@mac.com
    • Neurosci. Res. 2008 Sep 1; 62 (1): 15-24.

    AbstractOuter hair cell (OHC) loss in the auditory sensory epithelium is a primary cause of noise-induced sensory-neural hearing loss (SNHL). To clarify the participation of glial cells in SNHL, we used an Alexander disease (AxD) mouse model. These transgenic mice harbor the AxD causal mutant of the human glial fibrillary acidic protein (GFAP) under the control of the mouse GFAP promoter. It is thought that GFAP aggregates compromise the function of astrocytes. In the auditory pathway, the formation of GFAP aggregates was observed only in GFAP-positive cells of the cochlear nerve. The presence of GFAP aggregates did not change auditory function at the threshold level. To assess the change in vulnerability to auditory excitotoxicity, both transgenic and control mice were treated with intense noise exposure. Auditory threshold shifts were assessed by auditory brainstem responses (ABR) at 1 and 4 weeks after noise exposure, and OHC damage was analyzed by quantitative histology at 4 weeks after exposure. Transgenic mice showed more severe ABR deficits and OHC damage, suggesting that cochlear nerve glial cells with GFAP aggregates play a role in noise susceptibility. Thus, we should focus more on the roles of cochlear nerve glial cells in SNHL.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.