-
- Christopher Duplessis, Thomas C Luke, Chase Watters, Yolanda Alcorta, and Biswajit Biswas.
- Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20910, USA.
- Mil Med. 2023 Mar 20; 188 (3-4): e463e467e463-e467.
IntroductionStaphylococcus aureus (SA) is a major human bacterial pathogen increasingly refractory to antibiotics. Given the dearth of novel antibiotics in the developmental pipeline, we require concerted efforts at optimizing novel antimicrobial approaches. One promising option is the utilization of bacteriophage (phage) therapy, which has been resurrected as a viable clinical therapeutic. Specifically, an expanded library of phages targeting SA is desired. We surmised that SA-targeting phages would be readily accessible as a major component of the cutaneous microbiome. Specifically, we sought to discern if easily accessible (convenient) and discrete anatomic locations, including the nares, axilla, fingernails, toenails, and web spaces, could provide intact phages via a noninvasive, expedient procedure involving swabbing.MethodsOne hundred subjects participated in systematic skin swab specimen collections. Pooled samples were subject to phage harvesting utilizing the soft agar overlay technique. The approval was secured from the Naval Medical Research Center Institutional Review Board (NMRC 2018.0004 FWA00000152). We utilized the same procedures from known samples containing SA-targeting phages. As another positive control, we employed the same swab and acquired samples from an active wound infection.ResultsAs anticipated, there were no adverse events, and the procedure was successfully implemented within the projected 10-minute duration. No phages were identified exploiting this methodology. Positive controls from various environmental samples identified SA-targeting phages as did the wound effluent sample.ConclusionsSkin swabbing at multiple anatomic sites from 100 adults yielded insufficient biomass for phage recovery. The negative results provide helpful information for future phage isolation attempts. The lessons learned on why this study failed to isolate phages can be easily utilized by others. With a desire to increase our SA-targeting phage library in pursuit of future clinical trials, and acknowledging the paucity of these phages accessible via traditional recovery from environmental sources, we will next acquire large volumes of wound effluent from confirmed infected wounds with SA to optimize the biomass for phage recovery.Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2021. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.