-
Comparative Study
Thoracic Radiologists' Versus Computer Scientists' Perspectives on the Future of Artificial Intelligence in Radiology.
- EltoraiAdam E MAEMBrown University Alpert Medical School, Providence, RI., Alexander K Bratt, and Haiwei H Guo.
- Brown University Alpert Medical School, Providence, RI.
- J Thorac Imaging. 2020 Jul 1; 35 (4): 255-259.
BackgroundThere is intense interest and speculation in the application of artificial intelligence (AI) to radiology. The goals of this investigation were (1) to assess thoracic radiologists' perspectives on the role and expected impact of AI in radiology, and (2) to compare radiologists' perspectives with those of computer science (CS) experts working in the AI development.MethodsAn online survey was developed and distributed to chest radiologists and CS experts at leading academic centers and societies, comparing their expectations of AI's influence on radiologists' jobs, job satisfaction, salary, and role in society.ResultsA total of 95 radiologists and 45 computer scientists responded. Computer scientists reported having read more scientific journal articles on AI/machine learning in the past year than radiologists (mean [95% confidence interval]=17.1 [9.01-25.2] vs. 7.3 [4.7-9.9], P=0.0047). The impact of AI in radiology is expected to be high, with 57.8% and 73.3% of computer scientists and 31.6% and 61.1% of chest radiologists predicting radiologists' job will be dramatically different in 5 to 10 years, and 10 to 20 years, respectively. Although very few practitioners in both fields expect radiologists to become obsolete, with 0% expecting radiologist obsolescence in 5 years, in the long run, significantly more computer scientists (15.6%) predict radiologist obsolescence in 10 to 20 years, as compared with 3.2% of radiologists reporting the same (P=0.0128). Overall, both chest radiologists and computer scientists are optimistic about the future of AI in radiology, with large majorities expecting radiologists' job satisfaction to increase or stay the same (89.5% of radiologists vs. 86.7% of CS experts, P=0.7767), radiologists' salaries to increase or stay the same (83.2% of radiologists vs. 73.4% of CS experts, P=0.1827), and the role of radiologists in society to improve or stay the same (88.4% vs. 86.7%, P=0.7857).ConclusionsThoracic radiologists and CS experts are generally positive on the impact of AI in radiology. However, a larger percentage, but still small minority, of computer scientists predict radiologist obsolescence in 10 to 20 years. As the future of AI in radiology unfolds, this study presents a historical timestamp of which group of experts' perceptions were closer to eventual reality.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.