-
Int J Comput Assist Radiol Surg · May 2012
Comparative StudyVolume slicing of cone-beam computed tomography images for navigation of percutaneous scaphoid fixation.
- Erin J Smith, Hisham A Al-Sanawi, Braden Gammon, Paul J St John, David R Pichora, and Randy E Ellis.
- Department of Mechanical Engineering, Queen's University, Kingston, ON, Canada. smith@me.queensu.ca
- Int J Comput Assist Radiol Surg. 2012 May 1; 7 (3): 433-44.
PurposePercutaneous scaphoid fixation (PSF) is growing in popularity as a treatment option for non-displaced fractures. Success of this procedure demands high-precision screw placement, which can be difficult to achieve with standard 2D imaging. This study aimed to develop and test a system for computer-assisted navigation using volume slicing of 3D cone-beam computed tomography (CBCT).MethodsThe navigated technique involved a distinctive workflow in which a 3D CBCT imager was calibrated preoperatively, circumventing the need for intraoperative patient-based registration. Intraoperatively, a 3D CBCT image was acquired for both preoperative planning and direct navigation using volume-rendered slices. An in vitro study was conducted to compare the navigated approach to two conventional fluoroscopic methods for volar PSF. The surgical goal was to insert a guide wire to maximize both length and central placement.ResultsThere was no significant difference in the mean central placement of guide wire, although the variance in central placement was significantly lower using VS navigation (P < 0.01). The lengths of the drill paths were significantly longer for the VS-navigated group compared with one 2D group (P < 0.1). Each navigated trial required only one drilling attempt and resulted in less radiation exposure than conventional C-arm (P < 0.01).ConclusionsVolume-sliced navigation achieved a more repeatable and reliable central pin placement, with fewer drilling attempts than conventional 2D techniques. Volume-sliced navigation had a higher number of drill paths within the optimal zone maximizing both length of the path and depth from the surface.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.