-
- Lino M Sawicki, Johannes Grueneisen, Benedikt M Schaarschmidt, Christian Buchbender, James Nagarajah, Lale Umutlu, Gerald Antoch, and Sonja Kinner.
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany. Electronic address: linomorris.sawicki@med.uni-duesseldorf.de.
- Eur J Radiol. 2016 Feb 1; 85 (2): 459-65.
ObjectivesTo compare the diagnostic performance of (18)F-fluordesoxyglucose positron emission tomography/magnetic resonance imaging ((18)F-FDG PET/MRI) with (18)F-FDG PET/computed tomography ((18)F-FDG PET/CT), MRI, and CT in whole-body staging of recurrent breast cancer.Material And MethodsTwenty-one consecutive patients (age 59.4 ± 11.5 years, range 38.5-76.9 years; 20 female, 1 male) with suspected breast cancer recurrence underwent a clinically indicated (18)F-FDG PET/CT and subsequently a (18)F-FDG PET/MRI examination in a single injection protocol (mean injected activity: 257 ± 44 MBq (18)F-FDG). Each (18)F-FDG PET/MRI, (18)F-FDG PET/CT, as well as the CT component of PET/CT (CTPET/CT) and MR images of PET/MRI (MRIPET/MRI) were separately evaluated by two radiologists regarding lesion count, lesion localization, and lesion categorization (benign/malignant). The reference standard was based on histopathological results as well as prior and follow-up imaging. A Wilcoxon test assessed differences in SUVmax between (18)F-FDG PET/MRI and (18)F-FDG PET/CT. Correlation of SUVmax between (18)F-FDG PET/MRI and (18)F-FDG PET/CT was calculated using Pearson's correlation coefficient. Interobserver agreement on dignity ratings was evaluated using Cohen's kappa.ResultsAccording to the reference standard, 17 patients had breast cancer recurrence. (18)F-FDG PET/MRI, (18)F-FDG PET/CT, and MRIPET/MRI correctly identified each of the 17 patients, whereas CTPET/CT correctly identified 15 of the 17 patients. A total of 134 lesions were described (116 malignant, 18 benign). (18)F-FDG PET/MRI detected all 134 lesions, of which (18)F-FDG PET/CT, MRIPET/MRI, and CTPET/CT detected 97.0%, 96.2%, and 74.6%, respectively. (18)F-FDG PET/MRI yielded the highest proportion of correctly categorized lesions (98.5%) compared with (18)F-FDG PET/CT (94.8%), MRIPET/MRI (88.1%), and CTPET/CT (57.5%). SUVmax was strongly correlated (r=0.72) but measured significantly higher on (18)F-FDG PET/MRI than on (18)F-FDG PET/CT in corresponding PET-positive lesions (SUVmax: 5.6 ± 2.8 vs. 4.9 ± 1.8; p=0.001). Interobserver agreement on lesion dignity was substantial with (18)F-FDG PET/MRI (k=0.65; p<0.001) and (18)F-FDG PET/CT (k=0.65; p<0.001). With MRIPET/MRI interobserver analysis yielded a moderate agreement (k=0.56; p<0.001), whereas there was only fair agreement evaluating the CTPET/CT datasets (k=0.31; p=0.002).Conclusions(18)F-FDG PET/MRI offered the highest diagnostic performance compared with (18)F-FDG PET/CT, MRI and CT. Thus, (18)F-FDG PET/MRI should be regarded as a valuable alternative in whole-body staging of recurrent breast cancer.Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.