-
- Angel Torrado-Carvajal, Javier Vera-Olmos, David Izquierdo-Garcia, Onofrio A Catalano, Manuel A Morales, Justin Margolin, Andrea Soricelli, Marco Salvatore, Norberto Malpica, and Ciprian Catana.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.
- J. Nucl. Med. 2019 Mar 1; 60 (3): 429-435.
AbstractWhole-body attenuation correction (AC) is still challenging in combined PET/MR scanners. We describe Dixon-VIBE Deep Learning (DIVIDE), a deep-learning network that allows synthesizing pelvis pseudo-CT maps based only on the standard Dixon volumetric interpolated breath-hold examination (Dixon-VIBE) images currently acquired for AC in some commercial scanners. Methods: We propose a network that maps between the four 2-dimensional (2D) Dixon MR images (water, fat, in-phase, and out-of-phase) and their corresponding 2D CT image. In contrast to previous methods, we used transposed convolutions to learn the up-sampling parameters, we used whole 2D slices to provide context information, and we pretrained the network with brain images. Twenty-eight datasets obtained from 19 patients who underwent PET/CT and PET/MR examinations were used to evaluate the proposed method. We assessed the accuracy of the μ-maps and reconstructed PET images by performing voxel- and region-based analysis comparing the SUVs (in g/mL) obtained after AC using the Dixon-VIBE (PETDixon), DIVIDE (PETDIVIDE), and CT-based (PETCT) methods. Additionally, the bias in quantification was estimated in synthetic lesions defined in the prostate, rectum, pelvis, and spine. Results: Absolute mean relative change values relative to CT AC were lower than 2% on average for the DIVIDE method in every region of interest except for bone tissue, where it was lower than 4% and 6.75 times smaller than the relative change of the Dixon method. There was an excellent voxel-by-voxel correlation between PETCT and PETDIVIDE (R 2 = 0.9998, P < 0.01). The Bland-Altman plot between PETCT and PETDIVIDE showed that the average of the differences and the variability were lower (mean PETCT-PETDIVIDE SUV, 0.0003; PETCT-PETDIVIDE SD, 0.0094; 95% confidence interval, [-0.0180,0.0188]) than the average of differences between PETCT and PETDixon (mean PETCT-PETDixon SUV, 0.0006; PETCT-PETDixon SD, 0.0264; 95% confidence interval, [-0.0510,0.0524]). Statistically significant changes in PET data quantification were observed between the 2 methods in the synthetic lesions, with the largest improvement in femur and spine lesions. Conclusion: The DIVIDE method can accurately synthesize a pelvis pseudo-CT scan from standard Dixon-VIBE images, allowing for accurate AC in combined PET/MR scanners. Additionally, our implementation allows rapid pseudo-CT synthesis, making it suitable for routine applications and even allowing retrospective processing of Dixon-VIBE data.© 2019 by the Society of Nuclear Medicine and Molecular Imaging.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.