• The Journal of urology · Mar 2021

    Prospective Validation of Vesical Imaging-Reporting and Data System Using a Next-Generation Magnetic Resonance Imaging Scanner-Is Denoising Deep Learning Reconstruction Useful?

    • Satoru Taguchi, Mitsuhiro Tambo, Masanaka Watanabe, Haruhiko Machida, Toshiya Kariyasu, Keita Fukushima, Yuta Shimizu, Takatsugu Okegawa, Kenichi Yokoyama, and Hiroshi Fukuhara.
    • Department of Urology, Kyorin University School of Medicine, Tokyo, Japan.
    • J. Urol. 2021 Mar 1; 205 (3): 686-692.

    PurposeThe Vesical Imaging Reporting and Data System (VI-RADS) was launched in 2018 to standardize reporting of magnetic resonance imaging for bladder cancer. This study aimed to prospectively validate VI-RADS using a next-generation magnetic resonance imaging scanner and to investigate the usefulness of denoising deep learning reconstruction.Materials And MethodsWe prospectively enrolled 98 patients who underwent bladder multiparametric magnetic resonance imaging using a next-generation magnetic resonance imaging scanner before transurethral resection of bladder tumor. Tumors were categorized according to VI-RADS, and we ultimately analyzed 68 patients with pathologically confirmed urothelial bladder cancer. We used receiving operating characteristic curve analyses to assess the predictive accuracy of VI-RADS for muscle invasion. Sensitivity, specificity, positive/negative predictive value, accuracy and area under the curve were calculated for different VI-RADS score cutoffs.ResultsMuscle invasion was detected in the transurethral resection of bladder tumor specimens of 18 patients (26%). The optimal cutoff value of the VI-RADS score was determined as ≥4 based on the receiver operating curve analyses. The accuracy of diagnosing muscle invasion using a cutoff of VI-RADS ≥4 was 94% (AUC 0.92). Additionally, we assessed the utility of denoising deep learning reconstruction. Combination with denoising deep learning reconstruction significantly improved the AUC of category by T2-weighted imaging, and of the 4 patients who were misdiagnosed by the final VI-RADS score 3 were correctly diagnosed by T2-weighted imaging+denoising deep learning reconstruction.ConclusionsIn this prospective validation study with a next-generation magnetic resonance imaging scanner, VI-RADS showed high predictive accuracy for muscle invasion in patients with bladder cancer before transurethral resection of bladder tumor. Combining T2-weighted imaging with denoising deep learning reconstruction might further improve the diagnostic accuracy of VI-RADS.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.