-
The Journal of urology · Mar 2021
Prospective Validation of Vesical Imaging-Reporting and Data System Using a Next-Generation Magnetic Resonance Imaging Scanner-Is Denoising Deep Learning Reconstruction Useful?
- Satoru Taguchi, Mitsuhiro Tambo, Masanaka Watanabe, Haruhiko Machida, Toshiya Kariyasu, Keita Fukushima, Yuta Shimizu, Takatsugu Okegawa, Kenichi Yokoyama, and Hiroshi Fukuhara.
- Department of Urology, Kyorin University School of Medicine, Tokyo, Japan.
- J. Urol. 2021 Mar 1; 205 (3): 686-692.
PurposeThe Vesical Imaging Reporting and Data System (VI-RADS) was launched in 2018 to standardize reporting of magnetic resonance imaging for bladder cancer. This study aimed to prospectively validate VI-RADS using a next-generation magnetic resonance imaging scanner and to investigate the usefulness of denoising deep learning reconstruction.Materials And MethodsWe prospectively enrolled 98 patients who underwent bladder multiparametric magnetic resonance imaging using a next-generation magnetic resonance imaging scanner before transurethral resection of bladder tumor. Tumors were categorized according to VI-RADS, and we ultimately analyzed 68 patients with pathologically confirmed urothelial bladder cancer. We used receiving operating characteristic curve analyses to assess the predictive accuracy of VI-RADS for muscle invasion. Sensitivity, specificity, positive/negative predictive value, accuracy and area under the curve were calculated for different VI-RADS score cutoffs.ResultsMuscle invasion was detected in the transurethral resection of bladder tumor specimens of 18 patients (26%). The optimal cutoff value of the VI-RADS score was determined as ≥4 based on the receiver operating curve analyses. The accuracy of diagnosing muscle invasion using a cutoff of VI-RADS ≥4 was 94% (AUC 0.92). Additionally, we assessed the utility of denoising deep learning reconstruction. Combination with denoising deep learning reconstruction significantly improved the AUC of category by T2-weighted imaging, and of the 4 patients who were misdiagnosed by the final VI-RADS score 3 were correctly diagnosed by T2-weighted imaging+denoising deep learning reconstruction.ConclusionsIn this prospective validation study with a next-generation magnetic resonance imaging scanner, VI-RADS showed high predictive accuracy for muscle invasion in patients with bladder cancer before transurethral resection of bladder tumor. Combining T2-weighted imaging with denoising deep learning reconstruction might further improve the diagnostic accuracy of VI-RADS.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.