-
Neurobiology of disease · Jul 2014
Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation.
- Veronica Estrada, Nicole Brazda, Christine Schmitz, Silja Heller, Heinrich Blazyca, Rudolf Martini, and Hans Werner Müller.
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
- Neurobiol. Dis. 2014 Jul 1; 67: 165-79.
AbstractWe identified a suitable biomatrix that improved axon regeneration and functional outcome after partial (moderate) and complete (severe) chronic spinal cord injury (SCI) in rat. Five weeks after dorsal thoracic hemisection injury the lesion scar was resected via aspiration and the resulting cavity was filled with different biopolymers such as Matrigel™, alginate-hydrogel and polyethylene glycol 600 (PEG) all of which have not previously been used as sole graft-materials in chronic SCI. Immunohistological staining revealed marked differences between these compounds regarding axon regeneration, invasion/elongation of astrocytes, fibroblasts, endothelial and Schwann cells, revascularization, and collagen deposition. According to axon regeneration-supporting effects, the biopolymers could be ranked in the order PEG>>alginate-hydrogel>Matrigel™. Even after complete chronic transection, the PEG-bridge allowed long-distance axon regeneration through the grafted area and for, at least, 1cm beyond the lesion/graft border. As revealed by electron microscopy, bundles of regenerating axons within the matrix area received myelin ensheathment from Schwann cells. The beneficial effects of PEG-implantation into the resection-cavity were accompanied by long-lasting significant locomotor improvement over a period of 8months. Following complete spinal re-transection at the rostral border of the PEG-graft the locomotor recovery was aborted, suggesting a functional role of regenerated axons in the initial locomotor improvement. In conclusion, scar resection and subsequent implantation of PEG into the generated cavity leads to tissue recovery, axon regeneration, myelination and functional improvement that have not been achieved before in severe chronic SCI.Copyright © 2014 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.