• Environment international · Dec 2018

    The fraction of lung cancer incidence attributable to fine particulate air pollution in France: Impact of spatial resolution of air pollution models.

    • Ivana Kulhánová, Xavier Morelli, Alain Le Tertre, Dana Loomis, Barbara Charbotel, Sylvia Medina, Jean-Nicolas Ormsby, Johanna Lepeule, Rémy Slama, and Isabelle Soerjomataram.
    • Section of Cancer Surveillance, International Agency for Research on Cancer, Lyon, France. Electronic address: kulhanovai@fellows.iarc.fr.
    • Environ Int. 2018 Dec 1; 121 (Pt 2): 1079-1086.

    AbstractOutdoor air pollution is a leading environmental cause of death and cancer incidence in humans. We aimed to estimate the fraction of lung cancer incidence attributable to fine particulate matter (PM2.5) exposure in France, and secondarily to illustrate the influence of the input data and the spatial resolution of information on air pollution levels on this estimate. The population attributable fraction (PAF) was estimated using a nationwide spatially refined chemistry-transport model with a 2-km spatial resolution, neighbourhood-scale population density data, and a relative risk from a published meta-analysis. We used the WHO guideline value for PM2.5 exposure (10 μg/m3) as reference. Sensitivity analyses consisted in attributing the nation-wide median exposure to all areas and using alternative input data such as reference of PM2.5 exposure level and relative risk. Population-weighted median PM2.5 level in 2005 was 13.8 μg/m3; 87% of the population was exposed above the guideline value. The burden of lung cancer attributable to PM2.5 exposure corresponded to 1466 cases, or 3.6% of all cases diagnosed in 2015. Sensitivity analyses showed that the use of a national median of PM2.5 exposure would have led to an underestimation of the PAF by 11% (population-weighted median) and by 72% (median of raw concentration), suggesting that our estimates would have been higher with even more finely spatially-resolved models. When the PM2.5 reference level was replaced by the 5th percentile of country-scale exposure (4.9 μg/m3), PAF increased to 7.6%. Other sensitivity analyses resulted in even higher PAFs. Improvements in air pollution are crucial for quantitative health impacts assessment studies. Actions to reduce PM2.5 levels could substantially reduce the burden of lung cancer in France.Copyright © 2018. Published by Elsevier Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…