• Pediatr Crit Care Me · Sep 2007

    Randomized Controlled Trial

    Effect of inhaled corticosteroid on pulmonary injury and inflammatory mediator production after cardiopulmonary bypass in children.

    • Alexander R Santos, Sabrina M Heidemann, Henry L Walters, and Ralph E Delius.
    • Department of Pediatrics, Wayne State University, Detroit, MI, USA.
    • Pediatr Crit Care Me. 2007 Sep 1;8(5):465-9.

    ObjectiveTo determine whether inhaled steroid administration after cardiopulmonary bypass will attenuate pulmonary inflammation and improve lung compliance and oxygenation.DesignRandomized, prospective, double-blind, placebo-controlled clinical trial.SettingChildren's Hospital of Michigan, intensive care unit.PatientsThirty-two children <2 yrs of age with congenital heart disease requiring cardiopulmonary bypass.InterventionsParticipants were randomly assigned to one of two groups. Group 1 (n = 16) received an inhaled steroid, Budesonide (0.25 mg/2 mL), and group 2 (n = 16) received an inhaled placebo (2 mL of inhaled 0.9% saline). The nebulizations were given at the end of cardiopulmonary bypass, 6 hrs after cardiopulmonary bypass, and 12 hrs after cardiopulmonary bypass. Two hours after each nebulization, bronchoalveolar lavage for interleukin-6 and interleukin-8 was collected.Measurements And Main ResultsThe concentrations of interleukin-6 and interleukin-8 in the bronchoalveolar lavage increased in both groups after cardiopulmonary bypass. Interleukin-6 peaked 2 hrs after cardiopulmonary bypass and was decreasing by 14 hrs after cardiopulmonary bypass. However, administration of corticosteroid did not affect the production of interleukin-6 when compared with the placebo group (378 +/- 728 vs. 287 +/- 583 pg/mL pre-cardiopulmonary bypass, 1662 +/- 1410 vs. 1584 +/- 1645 pg/mL at the end of cardiopulmonary bypass, 2601 +/- 3132 vs. 3677 +/- 4935 pg/mL 2 hrs after cardiopulmonary bypass, and 1792 +/- 3100 vs. 1283 +/- 1344 pg/mL 14 hrs after cardiopulmonary bypass; p > .05). Likewise, interleukin-8 in the lavage fluid was similar in both the placebo and steroid groups at all time points (570 +/- 764 vs. 990 +/- 1147 pg/mL pre-cardiopulmonary bypass, 1647 +/- 1232 vs. 1394 +/- 1079 pg/mL at the end of cardiopulmonary bypass, 1581 +/- 802 vs. 1523 +/- 852 pg/mL 2 hrs after cardiopulmonary bypass, and 1652 +/- 1069 pg/mL vs. 1808 +/- 281 pg/mL 14 hrs after cardiopulmonary bypass; p > .05). Lung compliance and oxygenation were similar in both groups.ConclusionsCardiopulmonary bypass is associated with a pulmonary inflammatory response. Inhaled corticosteroid did not affect the pulmonary inflammatory response as measured by interleukin-6 and interleukin-8 concentrations in the lung lavage after cardiopulmonary bypass. Pulmonary mechanics and oxygenation were not improved by the use of inhaled corticosteroid.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…