• Wound Repair Regen · May 2005

    Interaction of exogenous liposomal insulin-like growth factor-I cDNA gene transfer with growth factors on collagen expression in acute wounds.

    • Marc G Jeschke, Thomas Schubert, Mareike Krickhahn, Elias Polykandriotis, Dagmar Klein, J Regino Perez-Polo, Rene Przkora, and David N Herndon.
    • Shriners Hospital for Children, University Texas Medical Branch, Galveston, Texas 77550, USA. Mcjeschke@hotmail.com
    • Wound Repair Regen. 2005 May 1; 13 (3): 269-77.

    AbstractGrowth factors have been shown to modulate the complex cascade of wound healing, however, interaction between different growth factors during dermal and epidermal regeneration is still not entirely defined. We have recently shown that exogenous liposomal gene transfer of cDNA results in physiologic expression and response in an acute wound. In the present study we determined the interaction between insulin-like growth factor-I (IGF-I), a mesenchymal growth factor, administered as liposomal cDNA, with other dermal and epidermal growth factors on collagen synthesis in an acute wound. Sprague-Dawley rats were given a scald burn to inflict an acute wound and divided into two groups to receive weekly subcutaneous injections of liposomes plus a beta-galactosidase containing plasmid (Lac Z [0.2 microg, vehicle]), or liposomes plus the IGF-I cDNA containing plasmid (2.2 microg) and Lac Z (0.2 microg). Immunological assays, histological and immunohistochemical techniques were used to determine growth factor concentration and different types of collagen (I, III, and IV) after IGF-I cDNA gene transfer. IGF-I cDNA transfer accelerated reepithelization and was associated with increased levels of IGF-I, fibroblast growth factor, keratinocyte growth factor, vascular endothelial cell growth factor, and platelet-derived growth factor protein expression. IGF-I cDNA had no effect on transforming growth factor-beta. IGF-I cDNA significantly increased type IV collagen while it had no effect on types I and III collagen. Exogenously administered IGF-I cDNA increased protein concentrations of keratinocyte growth factor, fibroblast growth factor, platelet-derived growth factor, and type IV collagen. We conclude that liposomal IGF-I gene transfer can accelerate wound healing without causing an increase in types I and III collagen expression.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.