• Cancer letters · Jul 2020

    Review

    Machine Learning in oncology: A clinical appraisal.

    • Renato Cuocolo, Martina Caruso, Teresa Perillo, Lorenzo Ugga, and Mario Petretta.
    • Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy.
    • Cancer Lett. 2020 Jul 1; 481: 55-62.

    AbstractMachine learning (ML) is a branch of artificial intelligence centered on algorithms which do not need explicit prior programming to function but automatically learn from available data, creating decision models to complete tasks. ML-based tools have numerous promising applications in several fields of medicine. Its use has grown following the increased availability of patient data due to technological advances such as digital health records and high-volume information extraction from medical images. Multiple ML algorithms have been proposed for applications in oncology. For instance, they have been employed for oncological risk assessment, automated segmentation, lesion detection, characterization, grading and staging, prediction of prognosis and therapy response. In the near future, ML could become essential part of every step of oncological screening strategies and patients' management thus leading to precision medicine.Copyright © 2020 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.