• IEEE Trans Neural Syst Rehabil Eng · Oct 2009

    Thresholds for transverse stimulation: fiber bundles in a uniform field.

    • Navid Pourtaheri, Wenjun Ying, Jong M Kim, and Craig S Henriquez.
    • Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
    • IEEE Trans Neural Syst Rehabil Eng. 2009 Oct 1; 17 (5): 478-86.

    AbstractCable theory is used to model fibers (neural or muscular) subjected to an extracellular stimulus or activating function along the fiber (longitudinal stimulation). There are cases however, in which activation from fields across a fiber (transverse stimulation) is dominant and the activating function is insufficient to predict the relative stimulus thresholds for cells in a bundle. This work proposes a general method of quantifying transverse extracellular stimulation using ideal cases of long fibers oriented perpendicular to a uniform field (circular cells in a 2-D extracellular domain). Several methods are compared against a fully coupled model to compute electrical potentials around each cell of a bundle and predict the magnitude of applied plate potential (Phi(p)) needed to activate a given cell (Phi(pact)). The results show that with transverse stimulation, the effect of cell presence on the external field must be considered to accurately compute Phi(pact). They also show that approximating cells as holes can accurately predict firing order and Phi(pact) of cells in bundles. Potential profiles from this hole model can also be applied to single cell models to account for time-dependent transmembrane voltage responses and more accurately predict Phi(pact). The approaches used herein apply to other examples of transverse cell stimulation where cable theory is inapplicable and coupled model simulation is too costly to compute.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…