• Int. J. Radiat. Oncol. Biol. Phys. · Oct 2004

    Interaction of amifostine and ionizing radiation on transcriptional patterns of apoptotic genes expressed in human microvascular endothelial cells (HMEC).

    • Nikolai N Khodarev, Yasushi Kataoka, Jeffrey S Murley, Ralph R Weichselbaum, and David J Grdina.
    • Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA.
    • Int. J. Radiat. Oncol. Biol. Phys. 2004 Oct 1; 60 (2): 553-63.

    PurposeAmifostine is a prodrug that requires dephosphorylation by alkaline phosphatase to become activated. This process occurs rapidly within the bloodstream after its i.v. administration to patients undergoing cancer treatment with selected radiation and chemotherapies. Vascular endothelial cells will, therefore, represent a normal cell system that is among the first to experience the radioprotective effects of this agent. Amifostine's active free thiol WR-1065 was investigated to determine its effect on radiation-induced changes in transcriptional patterns and subsequent apoptosis in human microvascular endothelial cells (HMEC) growing in vitro.Methods And MaterialsHuman microvascular endothelial cells were grown to confluency and then exposed to WR-1065 at a concentration of 4 mM for 30 min, radiation doses that ranged from 0 to 6 Gy, and WR-1065 at a concentration of 4 mM for 30 min before exposure to ionizing radiation. Cell survival was assessed by clonogenic assay, cell cycle phase was analyzed by flow cytometry, apoptosis was also assessed by flow cytometry in which Anexin V staining and sub-G1 fraction analysis were applied, and gene expression was analyzed by the Clontech Atlas Human cDNA array to identify synergistic and antagonistic effects as a function of amifostine and radiation exposure conditions with a focus on apoptotic-related factors.ResultsExposure of HMEC to 4 mM WR-1065 30 min before irradiation resulted in a protection enhancement factor of 2.0; that is, D(O-IRR) of 1.25 Gy and D(O-IRR+WR) of 2.56 Gy. Expression profiling revealed 29 genes that were synergistically activated by the combined action of WR-1065 and ionizing radiation, and an additional 12 genes were synergistically or additively suppressed. In particular, a subset of apoptosis-related genes that included caspases 2, 4, and 9 and different members of the bcl family, along with apoptosis-related receptors, were identified as being significantly affected by the combined treatment of WR-1065 and radiation exposure. In addition, a number of cell cycle-related genes that express cyclins A, G1, G2, and D3 and DNA damage/check point proteins ATM, DNA-PK and RAD23B were also found to be significantly affected. Functional assays of apoptosis were also performed that demonstrated the ability of WR-1065 to protect against radiation-induced apoptosis.ConclusionsWR-1065, the active thiol form of amifostine, is an effective radioprotector of HMEC as determined by use of clonogenic and apoptotic assays for cell survival. Expression profiling successfully defined the transcriptional response of HMEC to both WR-1065 and ionizing radiation exposure, either alone or in combination, and demonstrated both synergistic and antagonistic effects on the expression of different cellular genes, along with corresponding functional responses. The radioprotective effects of amifostine are not limited to its well-characterized physiochemical properties, which include free-radical scavenging, auto-oxidation leading to intracellular hypoxia, and chemical repair by hydrogen atom donation, but include its ability to modulate the complex transcriptional regulation of genes that are involved in apoptosis, cell cycle, and DNA repair.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.