-
Review Meta Analysis
Determining the wounding effects of ballistic projectiles to inform future injury models: a systematic review.
- John Breeze, A J Sedman, G R James, T W Newbery, and A E Hepper.
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK Biomedical Sciences Department, Dstl, Porton Down, Salisbury, Wiltshire, UK.
- J R Army Med Corps. 2014 Dec 1; 160 (4): 273-8.
IntroductionPenetrating wounds from explosively propelled fragments and bullets are the most common causes of combat injury experienced by UK service personnel on current operations. There is a requirement for injury models capable of simulating such a threat in order to optimise body armour design.MethodA systematic review of the open literature was undertaken using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology. Original papers describing the injurious effects of projectiles on skin, bone, muscle, large vessels and nerves were identified.ResultsProjectiles injure these tissues by producing a permanent wound tract (PWT), comprised of a central permanent wound cavity, in conjunction with a zone of irreversible macroscopic tissue damage laterally. The primary mechanism of injury was the crushing and cutting effect of the presented surface of the projectile, with an additional smaller component due to macroscopic damage produced by the radial tissue displacement from the temporary tissue cavity (TTC). No conclusive evidence could be found for permanent pathological effects produced by the pressure wave or that any microscopic tissue changes due to the TTC (in the absence of visible macroscopic damage) led to permanent injury.DiscussionInjury models should use the PWT to delineate the area of damage to tissues from penetrating ballistic projectiles. The PWT, or its individual components, will require quantification in terms of the amount of damage produced by different projectiles penetrating these tissues. There is a lack of information qualifying the injurious effect of the temporary cavity, particularly in relation to that caused by explosive fragments, and future models should introduce modularity to potentially enable incorporation of these mechanisms at a later date were they found to be significant.Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.