• ASAIO J. · Mar 2014

    Early feasibility testing and engineering development of the transapical approach for the HeartWare MVAD ventricular assist system.

    • Daniel Tamez, Jeffrey A LaRose, Charles Shambaugh, Katherine Chorpenning, Kevin G Soucy, Michael A Sobieski, Leslie Sherwood, Guruprasad A Giridharan, Gretel Monreal, Steven C Koenig, and Mark S Slaughter.
    • From the *HeartWare, Inc., Miami Lakes, Florida; †Division of Thoracic and Cardiovascular Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; ‡Department of Bioengineering, University of Louisville, Louisville, Kentucky; and §Research Resources Facilities (RRF), University of Louisville, Louisville, Kentucky.
    • ASAIO J. 2014 Mar 1; 60 (2): 170-7.

    AbstractImplantation of ventricular assist devices (VADs) for the treatment of end-stage heart failure (HF) falls decidedly short of clinical demand, which exceeds 100,000 HF patients per year. Ventricular assist device implantation often requires major surgical intervention with associated risk of adverse events and long recovery periods. To address these limitations, HeartWare, Inc. has developed a platform of miniature ventricular devices with progressively reduced surgical invasiveness and innovative patient peripherals. One surgical implant concept is a transapical version of the miniaturized left ventricular assist device (MVAD). The HeartWare MVAD Pump is a small, continuous-flow, full-support device that has a displacement volume of 22 ml. A new cannula configuration has been developed for transapical implantation, where the outflow cannula is positioned across the aortic valve. The two primary objectives for this feasibility study were to evaluate anatomic fit and surgical approach and efficacy of the transapical MVAD configuration. Anatomic fit and surgical approach were demonstrated using human cadavers (n = 4). Efficacy was demonstrated in acute (n = 2) and chronic (n = 1) bovine model experiments and assessed by improvements in hemodynamics, biocompatibility, flow dynamics, and histopathology. Potential advantages of the MVAD Pump include flow support in the same direction as the native ventricle, elimination of cardiopulmonary bypass, and minimally invasive implantation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…