• J. Exp. Med. · Nov 1992

    Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells.

    • A D'Andrea, M Rengaraju, N M Valiante, J Chehimi, M Kubin, M Aste, S H Chan, M Kobayashi, D Young, and E Nickbarg.
    • Wistar Institute of Anatomy and Biology, Children's Hospital of Philadelphia, Pennsylvania 19104.
    • J. Exp. Med. 1992 Nov 1; 176 (5): 1387-98.

    AbstractNatural killer cell stimulatory factor (NKSF), or interleukin 12 (IL-12), is a 70-kD heterodimeric cytokine composed of two covalently linked chains, p40 and p35. NKSF/IL-12 has multiple effects on T and NK cells and was originally identified and purified from the supernatant fluid of Epstein-Barr virus (EBV)-transformed human B lymphoblastoid cell lines. We have produced a panel of monoclonal antibodies against both chains of NKSF/IL-12. Some of these antibodies have neutralizing activity, and several combinations of them have been used to establish sensitive radioimmunoassays detecting the free p40 chain, the free p35 chain, or the p70 heterodimer. Using these reagents, we have determined that most EBV-transformed human B lymphoblastoid cell lines constitutively produce low levels of the p70 heterodimer and an excess of the free p40 chain, whereas Burkitt lymphoma-derived, T, myeloid, and many solid tumor-derived cell lines produce neither. Production of both p40 and p70 is increased several-fold upon stimulation of the EBV-transformed cell lines with phorbol diesters. The ability of supernatant fluids from unstimulated and phorbol diester-stimulated cell lines to induce interferon gamma (IFN-gamma) production from T and NK cells, one of the effects of NKSF/IL-12, parallels the levels of production of the p70 heterodimer, known to be the biologically active form of NKSF/IL-12. Staphylococcus aureus Cowan I strain (SAC) and other stimuli induce accumulation of p40 mRNA and production of both p40 and p70 by peripheral blood mononuclear cells (PBMC). The producer cells appear to include both adherent cells and nonadherent lymphocytes, possibly B cells. The supernatant fluids from SAC-stimulated PBMC mediate the typical functions of NKSF/IL-12 (i.e., IFN-gamma induction, mitogenic effects on T/NK blasts, enhancement of NK cell cytotoxicity) at concentrations of p70 similar to those at which recombinant NKSF/IL-12 mediates the same functions. Moreover, these activities are significantly inhibited by anti-NKSF/IL-12 antibodies. The neutralizing anti-NKSF/IL-12 antibodies also inhibit 85% of the IFN-gamma production in response to SAC, an NKSF/IL-12 inducer, and approximately 50% of the IFN-gamma production in response to non-NKSF/IL-12-inducers such as IL-2, phytohemagglutinin, and anti-CD3 antibodies. These results indicate that induced or constitutively produced NKSF/IL-12 has a major role in facilitating IFN-gamma production by peripheral blood lymphocytes.(ABSTRACT TRUNCATED AT 400 WORDS)

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.