-
IEEE Trans Med Imaging · Sep 2007
Structural analysis of fMRI data revisited: improving the sensitivity and reliability of fMRI group studies.
- Bertrand Thirion, Philippe Pinel, Alan Tucholka, Alexis Roche, Philippe Ciuciu, Jean-François Mangin, and Jean-Baptiste Poline.
- INRIA Futurs Research Institute, Parc Club Orsay Universit ZAC des Vignes, 91893 Orsay Cedex, France. bertrand.thirion@inria.fr
- IEEE Trans Med Imaging. 2007 Sep 1; 26 (9): 1256-69.
AbstractGroup studies of functional magnetic resonance imaging datasets are usually based on the computation of the mean signal across subjects at each voxel (random effects analyses), assuming that all subjects have been set in the same anatomical space (normalization). Although this approach allows for a correct specificity (rate of false detections), it is not very efficient for three reasons: i) its underlying hypotheses, perfect coregistration of the individual datasets and normality of the measured signal at the group level are frequently violated; ii) the group size is small in general, so that asymptotic approximations on the parameters distributions do not hold; iii) the large size of the images requires some conservative strategies to control the false detection rate, at the risk of increasing the number of false negatives. Given that it is still very challenging to build generative or parametric models of intersubject variability, we rely on a rule based, bottom-up approach: we present a set of procedures that detect structures of interest from each subject's data, then search for correspondences across subjects and outline the most reproducible activation regions in the group studied. This framework enables a strict control on the number of false detections. It is shown here that this analysis demonstrates increased validity and improves both the sensitivity and reliability of group analyses compared with standard methods. Moreover, it directly provides information on the spatial position correspondence or variability of the activated regions across subjects, which is difficult to obtain in standard voxel-based analyses.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.