-
J Magn Reson Imaging · Oct 2007
Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe-133 SPECT and dynamic susceptibility contrast MRI.
- Linda Knutsson, Siv Börjesson, Elna-Marie Larsson, Jarl Risberg, Lars Gustafson, Ulla Passant, Freddy Ståhlberg, and Ronnie Wirestam.
- Center for Medical Imaging and Physiology, MR division, Lund University Hospital, Lund, Sweden. Linda.Knutsson@med.lu.se
- J Magn Reson Imaging. 2007 Oct 1; 26 (4): 913-20.
PurposeTo compare absolute cerebral blood flow (CBF) estimates obtained by dynamic susceptibility contrast MRI (DSC-MRI) and Xe-133 SPECT.Materials And MethodsCBF was measured in 20 healthy volunteers using DSC-MRI at 3T and Xe-133 SPECT. DSC-MRI was accomplished by gradient-echo EPI and CBF was calculated using a time-shift-insensitive deconvolution algorithm and regional arterial input functions (AIFs). To improve the reproducibility of AIF registration the time integral was rescaled by use of a venous output function. In the Xe-133 SPECT experiment, Xe-133 gas was inhaled over 8 minutes and CBF was calculated using a biexponential analysis.ResultsThe average whole-brain CBF estimates obtained by DSC-MRI and Xe-133 SPECT were 85 +/- 23 mL/(min 100 g) and 40 +/- 8 mL/(min 100 g), respectively (mean +/- SD, n = 20). The linear CBF relationship between the two modalities showed a correlation coefficient of r = 0.76 and was described by the equation CBF(MRI) = 2.4 . CBF(Xe)-7.9 (CBF in units of mL/(min 100 g)).ConclusionA reasonable positive linear correlation between MRI-based and SPECT-based CBF estimates was observed after AIF time-integral correction. The use of DSC-MRI typically results in overestimated absolute perfusion estimates and the present study indicates that this trend is further enhanced by the use of high magnetic field strength (3T).(c) 2007 Wiley-Liss, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.