• IEEE Trans Med Imaging · Feb 2004

    Comparative Study

    Fully Bayesian spatio-temporal modeling of FMRI data.

    • Mark W Woolrich, Mark Jenkinson, J Michael Brady, and Stephen M Smith.
    • Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK. woolrich@fmrib.ox.ac.uk
    • IEEE Trans Med Imaging. 2004 Feb 1; 23 (2): 213-31.

    AbstractWe present a fully Bayesian approach to modeling in functional magnetic resonance imaging (FMRI), incorporating spatio-temporal noise modeling and haemodynamic response function (HRF) modeling. A fully Bayesian approach allows for the uncertainties in the noise and signal modeling to be incorporated together to provide full posterior distributions of the HRF parameters. The noise modeling is achieved via a nonseparable space-time vector autoregressive process. Previous FMRI noise models have either been purely temporal, separable or modeling deterministic trends. The specific form of the noise process is determined using model selection techniques. Notably, this results in the need for a spatially nonstationary and temporally stationary spatial component. Within the same full model, we also investigate the variation of the HRF in different areas of the activation, and for different experimental stimuli. We propose a novel HRF model made up of half-cosines, which allows distinct combinations of parameters to represent characteristics of interest. In addition, to adaptively avoid over-fitting we propose the use of automatic relevance determination priors to force certain parameters in the model to zero with high precision if there is no evidence to support them in the data. We apply the model to three datasets and observe matter-type dependence of the spatial and temporal noise, and a negative correlation between activation height and HRF time to main peak (although we suggest that this apparent correlation may be due to a number of different effects).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…