• IEEE Trans Med Imaging · Sep 2005

    Comparative Study

    Robust active appearance models and their application to medical image analysis.

    • Reinhard Beichel, Horst Bischof, Franz Leberl, and Milan Sonka.
    • Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16/2, A-8010 Graz, Austria. beichel@icg.tu-graz.ac.at
    • IEEE Trans Med Imaging. 2005 Sep 1; 24 (9): 1151-69.

    AbstractActive appearance models (AAMs) have been successfully used for a variety of segmentation tasks in medical image analysis. However, gross disturbances of objects can occur in routine clinical setting caused by pathological changes or medical interventions. This poses a problem for AAM-based segmentation, since the method is inherently not robust. In this paper, a novel robust AAM (RAAM) matching algorithm is presented. Compared to previous approaches, no assumptions are made regarding the kind of gray-value disturbance and/or the expected magnitude of residuals during matching. The method consists of two main stages. First, initial residuals are analyzed by means of a mean-shift-based mode detection step. Second, an objective function is utilized for the selection of a mode combination not representing the gross outliers. We demonstrate the robustness of the method in a variety of examples with different noise conditions. The RAAM performance is quantitatively demonstrated in two substantially different applications, diaphragm segmentation and rheumatoid arthritis assessment. In all cases, the robust method shows an excellent behavior, with the new method tolerating up to 50% object area covered by gross gray-level disturbances.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…