-
Comparative Study
Oncological whole-body staging in integrated (18)F-FDG PET/MR: Value of different MR sequences for simultaneous PET and MR reading.
- Benedikt M Schaarschmidt, Johannes Grueneisen, Philipp Heusch, Benedikt Gomez, Karsten Beiderwellen, Verena Ruhlmann, Lale Umutlu, Harald H Quick, Gerald Antoch, and Christian Buchbender.
- Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf, Germany; Univ Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen, Germany. Electronic address: benedikt.schaarschmidt@med.uni-duesseldorf.de.
- Eur J Radiol. 2015 Jul 1; 84 (7): 1285-92.
ObjectiveTo evaluate different magnetic resonance (MR) imaging sequences in integrated positron emission tomography (PET)/MR concerning their ability to detect tumors and allocate increased radionuclide uptake on (18)F-fluorodeoxyglucose ((18)F-FDG) PET in intraindividual comparison with computed tomography (CT) from PET/CT.Material And MethodsSixty-one patients (34 female, 27 male, mean age 57.6 y) who were examined with contrast-enhanced PET/CT and subsequent PET/MR (mean delay for PET/MR after injection: 147 ± 43 min) were included. A maximum of ten (18)F-FDG-avid lesions per patient were analyzed on CT from PET/CT and with the following MR sequences from PET/MR: T2, turbo inversion recovery magnitude (TIRM), non-enhanced T1, contrast-enhanced T1, and diffusion-weighted imaging (DWI). All lesions were rated using a four-point ordinal scale (scored from 0 to 3) concerning visual detectability of the lesion against the surrounding background and anatomical allocation of the PET finding. In each category (detectability and allocation), Wilcoxon rank sum tests were performed. Bonferroni-Holm correction was performed to prevent α-error accumulation.ResultsIn 225 (18)F-FDG-avid lesions (156 confirmed as malignant by radiological follow up, 69 by histopathology), visual detectability was comparably high on CT (mean: 2.5 ± 0.9), TIRM (mean: 2.5 ± 0.9), T2 (mean: 2.4 ± 0.9), and DWI (mean: 2.5 ± 1.0) and was significantly higher than on non-enhanced T1 (mean: 2.2 ± 1.0). While anatomic allocation of the PET finding was comparable with CT (mean: 2.6 ± 0.7), T2 (mean: 2.6 ± 0.7), and TIRM (mean: 2.8 ± 0.7), it was significantly higher compared to DWI (mean: 2.1 ± 1.0) and non-enhanced T1 (mean: 2.4 ± 0.8).ConclusionIn conclusion, T2, TIRM, and contrast-enhanced T1 provide a high quality of lesion detectability and anatomical allocation of FDG-avid foci. Their performance is at least comparable to contrast-enhanced PET/CT. Non-enhanced T1 may be omitted and the necessity of DWI should be further investigated for specific questions, such as assessment of the liver.Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.